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ABSTRACT

The study describes a number of algorithms for
solving single facility deterministic location problems
in which the planar assumption is not appropriate. Trans-
formations on the non-Euclidean spherical space are com-

bined with efficient solution techniques in E". Extensive

use is made of projective, synthetic and analytic geometry.

Two algorithms are presented for solving single
facility problems with the objective of minimizing the
total sum of costs (minisum). Due to the non-convex
nature of the problem, a local optimum is obtained. Com-
putational experience in scolving a number of test problems
is reported. Theoretical results concerning narrowing of
the search region are presented as well as a number of
special properties of the problem. Application of the
single facility results to the location-allocation class
of multifacility minisum problem is investigated.

Algorithms for the single facility problem having
the objective of minimizing the maximum distance (minimax)
are also considered. It is seen that existing algorithms
in E2 can be used to solve the problem when all demand
points are containable in a hemisphere. Application of
single facility results to solution of a specific type of

multifacility minimax problem is investigated.
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CHAPTER I

INTRODUCTION

I.1 Background of the Research

Human concern about distance is an integral part of
everyday life. Frequently decisions for or against an
alternative are primarily based upon the constraining ele-

ments of 'too near'" or 'too far." The theory of optimal
facilities location provides tools which can assist one
in selecting sites for servicing facilities that will
directly affect the distance traveled.

Cooper (1963) credits Cavalieri with first con-
sidering, in 1647, the problem of finding a point at which the
sum of those distances from three given points is a minimum.
This is referred to variously as the Steiner or Fermat
problem in the literature. Sylvester (1857) evidently
first proposed the problem of finding the points in the
plane such that the maximum distance to a finite set of
points in the plane is minimized. Although location theory
has developed far beyond these fundamental mathematical

problems, new observations and results are still being

reported concerning them (Sokolowsky 1976).
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A new era in location theory began with development
of an iterative process to solve a generalization of the
Steiner-Fermat problem. The technique, developed inde-
pendently by Cooper (1963) and Kuhn and Kuenne (1962),
was first proposed by Weiszfeld (1936). 1In the past twenty
years literally hundreds of papers have appeared on the
subject in many different fields. Regarding the general
literature of location theory as it exists today, ReVelle
et al. (1970) found it convenient to consider two main
structural categories:

1. Location on a plane, characterized by an infi-
nite solution space and a distance measurement according
to any particular metric.

2. Location on a network, characterized by a solu-
tion space consisting of points on a network and the dis-
tance or time measurement dij is the length/time of the
shortest path from node i to node j.

This morphology is generally accepted as repre-
sentative of location systems theory.

Early maps of the world (circa eleventh century)
depicted the earth as a flat plane. The discovery that the
earth was essentially spherical created problems for
cartographers that are still being investigated today.

It is well known (Hilbert 1952) that there exists no iso-
metric (length-preserving) transformation from a sphere

to the plane. This property, or lack thereof, eliminates
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the possibility of a transformation so that Euclidean
geometry can be used, in the large, to measure spherical
distances.

Due to the relative intractability of working in
non-Euclidean space, however, much effort has been expended
in the past in attempting to develop transformations from
non-Euclidean to Euclidean space which preserve desired
properties. A review of such attempts is provided by Angel
and Hyman (1972). Also, in another vein, research is
ongoing in attempts to create optimal transformations from
the sphere to the plane which minimize the error of a given
parameter (area, distance, etc.) for a specific region.
Recent work has been done by Milnor (1969) and Gilbert
(1974) .

In spite of the foregoing efforts there remain prob-
lems in location theory for which the Euclidean assumption
is totally inappropriate. Unfortunately, though, the
majority of theoretical developments in several related
fields (location theory, theoretical geography, and regional
science) require a geometrical framework based upon the
assumption of a Euclidean plane. Considering the nature
of the earth, it is surprising that so little considera-
tion has been given to non-Euclidean bases, specifically
the great circle metric. It is such a situation to which
this research is addressed.

A simple illustration of the magnitude of error
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which can occur is provided in Table 1.1 for a three point

Steiner problem on the sphere (see Data Set D9 of Appendix

B). Using both a Euclidean assumption and a spherical

assumption, the problem was solved by an existing algorithm

for the plane and methods developed in this thesis for the

sphere. The coordinates of the points are in degrees

latitude and longitude. For the planar problem, the

spherical coordinates were used as Cartesian coordinates.

Objective Function Value

Circle Metric

Euclidean Norm

Location
(Lat., Long.) Erant
bl (80.6,75)
on Sphere e
e
ogtll)’f;’;e (61.75,75)

2.08187

2 0L5E23

2.1728

2.70985

Table 1.1. Sphere vs. plane, a Steiner problem.

When using the planar assumption there is an

18.85° error in location of the optimum facility, or approx-

imately 1300 miles on the earth'

over a 30% error in the optimum

Due to the increasingly
tions and international defense
useful to consider large region

Warntz (1966) declares, perhaps

earth'" is not too far removed into the future.

s surface. Also, there is

objective function value.

global nature of corpora-

structures, it would seem

location problems. As

the time of '"'community

Due to the

infeasibility of developing a transformation to handle




e P s D

5
large region problems on a sphere via Euclidean geometry,

there is a need to develop solution techniques for such

S S

problems.

It is recognized that the earth is a spheroid
rather than a sphere. Computation for the spheroid is
tedious at best, but the error due to a spherical assump-

tion is not too significant. Use of spheroidal equations

e e e

would only be warranted where extreme accuracy is sought,

and when all other aspects of the problem are handled with

4 utmost care. If the earth were represented by a spheroid
with an equatorial diameter of 25 feet, the polar diameter

would be approximately 24 feet 11 inches (Deetz and Adams

1945). Maling (1973) cites a study in which the average

distance error when using a spherical assumption is less

than 1.07% between 200 points in the United States.

.

1.2 Location Problems Considered

This study deals with optimizing the point loca-
tion of a single servicing facility in a three dimensional,
constrained, continuous solution space for a finite system
of known fixed demand points located on a sphere. The
demand points are connected with the servicing facility
by communications/transportation links. The demand points
cover a large region, i.e., a region in which the planar
assumption introduces considerable error. A single
equality constraint forces the solution to be two dimen-

sional in the three dimensional space by restricting
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solutions to be on the surface of a sphere. That is, the
communications/transportation links between the servicing
facility and the demand points are via great circle arcs
on the surface of the sphere which contains the demand
points. Costs due to transportation are a linear function
of distance. Except for specific examples, a unit sphere
shall be assumed. This is done without loss of generality
since geodesic distance, s, is directly related to the
radius, r, via s = ro.

Two different objectives will be considered:

i. Minisum. Minimize the total sum of costs.
Having M existing facilities located at known distinct
points Pl’ P2, RELE PM; a new facility is to be located
at point X. Costs of a transportation nature are incurred
that are directly proportional to the distance metric

between the new facility and existing demand point.

Definition 1.1 Given any two points X = (XI’XZ""’Xn) and
Y = (yl,yz,...,yn) in Euclidean E" space, and p > 1, the
Vp metric between X and Y is:

pyLl/p
;17

|X-¥}, =1 & lxi—y.
P i=1
(Note that p = 1 and p = 2 represent the rectilinear and
Euclidean norms, respectively.)

If W, is the product of cost per unit distance and

number of trips per time period between X and Pi’ the total




cost per period is given by:

f(X) =

Wi X-Pylg
1

p

I B
.—d

The single facility location problem using the minisum
objective is to determine the location of the servicing
facility, say X*, that minimizes f(X), the period's total
transportation cost.

For the large region location problem one can
define p(X,Pi) as the shortest great circle distance
between demand point Pi and servicing facility X. This
measurement of distance is shown to be a metric by Blumenthal
(1961). The problem then becomes:

M
Minimize X W.p(P:,X)
X o R

Subjeect to |X|, =1, XeES
2
where PieE3 are points on the unit sphere for i = 1,...,M.

ii. Minimax. Minimize the maximum distance.

That is:
Minimize Z
X 7
Subject to |X—Pil2 < 7 4o = M
P

where Z is (geometrically) the radius of a sphere centered
at X, and Pi and X are as above.
Suppose a known finite number of points on the surface of

a sphere is given and it is desired to locate a single
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point on the sphere's surface so that the maximum great
circle distance between this point and the given point is
minimized. The problem is then formulated as:
Minimize Z
X
Subject to p(X,Pi) < 7

IX| =1L
55

where X and Pi are as above.

I.3 Application of Research

This research has application in any large region,
long range single facility minimax or minisum location
problem and, as will be pointed out in Chapters III and 1V,
may be useful in development of techniques to handle the
counterpart multifacility problem. Such topics as detection
station placement, naval deployment, location of interna-
tional headquarters or distribution/marketing centers, and
location of long range weapons systems fall within the
purview of this research. It would seem especially perti-
nent in the area of long range communications. The impor-
tance in radio engineering stems from the fact that radio

transmissions follow a great circle track.

1.4 Scope and Limitations

The research is limited to consideration of the

single facility location problem using a great circle metric.

The servicing facility is restricted to the spherical
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surface upon which a finite number of 'weighted" demand
points are located. As cited previously, except for the
restriction on location of the servicing facility, the
problem is unconstrained. Two criteria, minimization of
total costs and minimization of maximum costs, are investi-
gated.

Extensive use of synthetic, projective and analytic

geometry is made throughout the research in development of

solution procedures and establishing the theoretical results.
There is a definite gap in the theory of location

with regard to the great circle metric. This research is

motivated by recognition that there are situations in which

: it is necessary to use special techniques, notably when

the regions considered are larger than a hemisphere. The

research investigates the properties of such problems and

develops approaches for handling them. It is hoped this

work will ultimately stimulate interest in the development

of efficient approaches for the multifacility location

problem on the sphere.

I.5 Order of Presentation

Due to the magnitude of work that has been done on

the generalized Weber problem and other location models,

Chapter II contains a survey of only the literature
directly related to the research effort. Extensive bib-
liographies on the general literature are referenced.

Chapter III presents the research findings concerning the

e
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minisum single facility problem using a great circle metric.
Two heuristic algorithms are developed for solution of the
problem. In Chapter IV the related minimax problem is
examined. It is shown that existing algorithms for the

2 and E3

problem in E can be adapted to solve the large
region problem in certain cases. Chapter V presents compu-
tational experience with the algorithms developed in Chapter
III. A number of example problems are solved and results
discussed. The research is summarized and recommendations

for future research are made in Chapter VI.

st ittt




CHAPTER II

STATE OF THE ART

This chapter presents a review of previous research
pertinent only to location problems in large regions. As
mentioned in Chapter I, two specific types of objective
functions are of interest:

1. Minimization of total costs (Minisum), and

2. Minimization of maximum distance (Minimax).
Concerning the general literature on location, one may refer
to extensive bibliographies (Francis and Goldstein 1974;

Lea 1973), and a textbook (Francis and White 1974).

Only recently have researchers shown any interest
concerning location problems of the minisum variety for
regions so large that a Euclidean (planar) assumption is
not appropriate. Wendell (1971) provided a brief discussion
of the minisum single facility location problem on the
earth's surface. An approximation technique was given
which used Schwartz's inequality to find an explicit
approximate solution (see Section III.8). Methods for
obtaining an exact solution were not considered.

Lea (1973) states that some work has been done on

11

R ———————




12
the problem by Krolikowski. The Newton-Raphson iteration
method was evidently used to solve the problem and contouring
was proposed both to supplement problem solution and to
overcome geographic infeasibilities.

Katz and Cooper (1975, 1976) discussed the theoreti-
cal and computational aspects of the problem, with some
attention paid to other metrics on the sphere. An interac-
tive method employing a normalized gradient and an accelera-
tion scheme due to Steffensen (Henrici 1964) is used for
finding a local optimum. Steffensen's technique is a
standard method for accelerating convergence in an itera-
tive algorithm.

Nothing in the literature indicates a complete or
explicit work related to the subsequent research effort.
Nearly all the published work that refers to location in a
large region or on a spherical surface has been concerned
with the minimax criterion. However, most of the effort
in the past has been directed toward solving the problem
for the continuous case, i.e., locating n facilities on
the sphere so that the maximum distance to any point on
the sphere is minimized.

The attempts at solving this problem, and a concise
statement of it, are given by Tdth (1973). An excellent
review of solutions for the cases n = 5 and n = 7 is found
in Meschkowski (1966). There are only a few values of

n for which the solution is known and for arbitrary values
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of n there is not even a reasonable conjecture concerning
the solution.

Concerning the minimax criterion when only a
finite number of demand points exist on the sphere (the
problem of interest), evidently nothing has been done in
over a century. The problem in E2 was first proposed by
Sylvester (1857). As cited by Sylvester (1860), the problem
was solved for E2 by Peirce. The technique was redis-
covered by Chrystal (1885). A more recent presentation of
the approach is given by Rademacher and Toeplitz (1957)
in a book of mathematical diversions. In Sylvester's
paper the problem was erroneously claimed to be completely
analogous to the one on the sphere. This claim is discussed
further in Section IV.4.

Peirce's rudimentary technique for E2 is suitable
for solving the problem by hand. Recently Elzinga and
Hearn (1972a) presented a similar algorithm which was
conducive to programming on a computer and hence is more
efficient. No such efficient technique exists for the
counterpart problem on the sphere.

Since little has been done concerning the large
region location problems, a Euclidean assumption was made,
using latitude and longitude as Cartesian coordinates.

Any large region ''real world" example problem in the
literature is invariably concerned with not-so-large a

region situated in the middle latitudes, thus keeping the
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error due to a Euclidean assumption within bounds of
acceptability. Notable examples of such problems are
presented by Kuhn and Kuenne (1962), Smallwood (1965),
and Chapelle (1969). Two of these problems will be dis-

cussed in more detail in Chapter V.

Kuenne and Soland (1971, 1972), in a study of the
multifacility generalized Weber problem, convert latitude
and longitude to coordinates on a Mercator Projection
(Warntz and Wolff 1971), compute all distances as rhumb-
line map distance, and convert to approximate great circle
distances. Although it worked well for their purposes, the
error in this method increases dramatically as either polar
region 1is approached or regions larger than a hemisphere
are considered. Their approach is discussed further in
Seetion LI1.14.2.

Considering the foregoing, it is evident that
researchers were aware of the problems encountered in
using a Euclidean assumption when demand points are scat-
tered over a large region, but to date little has been

done to resolve them.




CHAPTER I1I

MINISUM SINGLE FACILITY LOCATION PROBLEMS

III.1 Introduction

In this chapter minimization of the total costs for
a single facility location problem on a sphere using the
great circle metric is addressed. Two new algorithms for
solution of the "minisum'" problem are developed, and a
number of properties of the problem are presented.

As stated in Chapter I, a general form of the prob-

lem for Qp metrics is given by:

M
min £f(X) = I W,|[X-P,|
X e 1 Slp
where: Pi for i=1,...,M are fixed demand points
wi for i=1,...,M are non-negative weights, and

X is the unknown location of the servicing facility,

XeEZ

The objective, then, is to determine the location of the
%*

new facility, say X , that minimizes f(X), the total

"transportation' cost. Cost is considered to be strictly

a function of great circle distance and demand point weights.

15
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IIT.2 Problem Formulation

On the sphere, formulation of the problem requires
use of inverse trigonometric functions. There are a number
of formulations, each having its own advantages and disad-

vantages. In general, the problem can be formulated as

&M=

min Wip(Pi,X) (3.2.1)
X i=1

Subject to |X|, = 1, XeE3
2

where: p(Pi,X) is the great circle distance between demand

point Pi and servicing facility X, and !.Ilz is the

Euclidean norm. Without loss of generality, the problem

is formulated for the unit sphere since arc length on a

spherical surface is directly proportional to the radius.
Recognizing that the shortest distance between two

points on a sphere is via the shorter great circle arc

connecting them (Lyusternik 1964) it can be shown that

IPi-XIQ
PIGE, S =2 Aresin ——e 2 (3.2.2)
2
Thus, one has:
M |P.~x|1
min I 2W;Arcsin ——lf—— 2 (3.2.3)
X i=1

Subject to IXI2 =1, XeE3
2

where : Wi,P and X are defined as in Section III.1.

i,
It is easily seen that the argument for Arcsin is

restricted between 0 and 1, and that the function is convex
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| in this region. It is well-known that a convex function
operating on a convex function is likewise convex. Recog-
nizing that the argument is convex and that the objective
function is a non-negative sum of convex functions it fol-
n lows that it, too, is convex. Unfortunately, though, the
solution space is not convex, resulting in a non-convex
programming problem. This is demonstrated graphically in
Figure 3.1. Although this form of the problem is revealing
with regard to properties of the unconstrained problem, it
was found to be not as efficient computationally in repeated
calculations of objective function values as the next
formulation (about 20% slower on an IBM 370/158J).
A basic result of elementary calculus is that if

two lines L1 and L2 have direction cosines (Al,ul,vl) and

(Az,uz,vz), and if 9 is the angle between L1 and L2 then
cos 0 = A1A2 + WMy + VyV,. Defining y; as the angle
between the rays in E3 determined by .(-)T’;and 63?, where O

is the center of the sphere, and observing that minimizing
the weighted sum of the arcs (great circle distances) is

equivalent to minimizing the weighted sum of the angles

which subtend the arcs, the objective is

M
Min Zl wiwi GO i)
X i=

Subject to |X[, =1
P

On a sphere of radius 1 with center at the origin

- 3 : " gt
in E7, demand points Pi = (ai’bi'ci)’ i=1,...,M and




f




19

X = (xl,xz,x3) it follows that:

wi = Arccos (aixl s bix2 =+ cix3) (3.2.5)

where: IX'jz = 1. Converting to spherical coordinates
"2
one gets the following formulation:

M
Min I

wi Arccos (aisin¢cosk + (3.2.6)
i

1
bisin¢sinx + cicos¢)

Subject to -m < A < mw

! 0r = @£ 1
|
|

where: X] = sindcosi wi >0 i=1l,...,M

sindsinA
4 X3 = cos¢

This formulation, equivalent to (3.2.3), was found
to be efficient for the two algorithms developed in this
§ chapter. Using formulation (3.2.6), though, an essenti-
ally unconstrained problem with two bounded variables is
solved. The bounds are necessary only because of periodi-
city of the objective function. A conspicuous disadvantage,

which could affect its use in some algorithms, is that one

knows little about the properties of the objective function.

The Arccos function is neither convex nor concave over the

domain.

Any point on the sphere can be identified by a two-
tuple (¢,2) where ¢ is the colatitude (0 < X < n) and A is
the longitude or meridian (-n < X < w). Letting Pi = (¢i,Ai)

and X = (¢,1), via the Law of Cosines for Elliptic Geometry
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(Kay 1969) and properties of the cosine function it follows
that:

= 3 ( i 1« A=A = »
cos[p(Pi,X)] cosd,cosd + s1n¢131nbcos( i) A1

and thus:
p(Pi,X) = Arccos (Ai)

The goal, then, is to:

minimize

=

: wi Arccos (Ai) (3.2.7)

i
Subject to 0 < ¢ < =
-T < A < W
This formulation, although similar to the previous
one, was found to be computationally inefficient. This is
primarily due to time required for Taylor Series approxi-
mations of trigonometric functions on a digital computer.
Its principal advantages are that one works directly with

spherical coordinates, along with the property that the

formulation is essentially an unconstrained problem.

II1.3 Fundamental Properties

In this section the non-convexity of the problem
is demonstrated, along with non-differentiability of the
objective function and the fact that the domain of the

objective function is restricted.

IIT.3.1 Non-convexity

The unfortunate characteristic of non-convexity,

which is not a factor in the planar single facility location
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problem, is best seen through an example. Consider the
three equally weighted demand points in Data Set D1 of
Appendix B and suppose the objective is to minimize the
total sum of great circle distances. A three dimensional
graph of the objective function values as a function of ¢
and 2 is seen in Figure 3.1. It is depicted as a flattened
sphere with infinite distortion along the ¢A plane at the
North and South Poles. It is clear from the graph that
local minima exist at Pl’ P2, and P3, with possible doubts
as to what is happening behind the peak at P3'. It turns
out that all the local minima are visible, and it will be
seen in Chapter V that the global minimum occurs at P3.
Figure 3.2, a contour plot of the minisum objective
function using Data Set D2 of Appendix B, exhibits the
possible existence of alternate optima on the sphere,
namely the entire arc P2P3. The graph of the objective
function over the great circle arc as a function of longitude

is piecewise linear.

IIT.3.2 Non-differentiability

Besides the non-convexity of the problem, difficul-
ties arise as to differentiability of the objective function,
necessitating consideration of techniques to circumvent
these difficulties during any search procedure. Although
non-differentiability occurs only at the demand points
for the counterpart planar Euclidean norm problem, on the

sphere the objective function is non-differentiable at both
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the demand points and at the unique points antipodal
(p(x,y) = m) to each of the demand points. Referring to
Figure 3.1 again, the "knife-edged surface' described by
Vergin and Rogers (1967) appears at these points. The
reason for this occurrence can be seen by examining the

derivative of Arccos X:

dArccos X _ —
~——x - V1x?

Note that the first derivative is undefined when X = T 1,
which occurs for arcs of length 0 and 7, which in turn
correspond to the situations when one is at a demand point
or its antipodal point.

Concerning the search techniques which will be
developed, one of them requires consideration of this
property since it employs a gradient search. The other

algorithm is derivative-free.

IV.3.3 Restricted Domain of Objective Function

Another property of the single facility minisum
sphere problem not encountered in the planar case is that
the domain for the objective function is restricted. This
is because the real argument Z of the Arccos function may
not exceed the bound |Z| < 1. Given that X is a possible
servicing facility location, certainly the objective func-
tion is defined for all possible X contained within or on

the unit sphere, but not defined for all X outside the

sphere. 1In Figure 3.2 this is demonstrated for a four point
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problem in the degenerate case of location on a great
circle arc. The "outer' area is not within the domain of
definition. As the number of demand points increase around
the sphere, note that the domain of definition will shrink
to approximate the sphere.

This restricted domain of definition must be con-
sidered when using any search technique calling for projec-
tions. Care must be taken to insure that the search does
not leave the domain of definition, thus causing premature

termination.

II1.4 Dominance Properties on the Sphere

ITI1.4.1 1Introduction

Although the general minisum problem on the sphere
has many undesirable properties, there are situations in
which one can reduce the search region for a global optimum.
For example, it seems plausible and intuitive that if all
the demand points are located on a hemisphere, then any
search for an optimal solution can be restricted to this
region. Using specific results of convexity theory for
spherical geometry, this intuitive concept is now generalized
to demonstrate that any search for an optimal solution to
(3.2.1) can be restricted to the spherically convex hull of
the demand points.

The major results of this section are based upon a

generalization of Kuhn's (1967) concept of dominance due
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to Wendell and Hurter (1973). It is described by: }

Definition 3.4.1 A point x' dominates a point x with

respect to P,,...,P.,...,P , demand points, if and only if
1 i M

p(x',Pi) < p(X,Pi) foxr all .

As an immediate result, if x' dominates x with

respect to Pi for all i, and wi is a non-negative constant
for all i, x' has the property that:
M

! Wopo(x',Pr) < iil Wip(x,P.)

i &=

i

So, by showing for any x¢V, where V is a spherically
convex hull, that there exists an x'eV such that x' domi-
nates x one is assured of the existence of an optimal solu-
tion x* such that x* is in V.

Prior to establishing the main results it is neces-
sary to introduce some concepts and lemmas. Terminology and

proofs of supportive lemmas are in Appendix A.

III1.4.2 Dominance within Spherically Convex Hull

In this section it is established that any search
for an optimal solution to (3.2.1) can be restricted to the

spherically convex hull containing the demand points.

Theorem 3.4.1 Given a set of demand points

{Pi|i=1,...,M} (not consisting of two antipodal points)
whose convex hull is V = conv{Pi|i=1,...,M}. For any xeS2
such that x¢V, there exists x*r:VcS2 such that x* dominates

x in the great circle metric with respect to Pi’ - L) SUENE
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Proof: By Lemma A.8, V is closed. So applying
Lemma A.4, consider the support line L orthogonal to line
?3 at p. The proof is in two parts.

Part A. Suppose that V lies entirely on a line

through x, and further that the measure of V = pq is < 7

(note that if the measure is > 7, then it is equal to 2m).

For x¢V, designate p as the closest point of V to x.
If p(x,p) > n/2, choose x* as the midpoint of Pq. Since
p(p,q) < m, then p(x*,Pi) < n/2 for all Pf:V, i=1,...,M;
and x* dominates x.

If p(x,p) < w/2, consider the following. If
p(p,q) < p (x,p) then the choice x* = p obviously dominates
x since for any demand point P, (xpP;q) holds and p(x*,P;) =
o(p,pi) < p(p,q) < p(x,p) < p(x,Pi). Otherwise, take
x*cpq such that (xpx*) and p(x,p) = p(p,x*). Also, define
x' and p' as the antipodal opposite points of x and p,
respectively. Let Pi be a demand point.

Case I. P.epx* (Figure 3.3a)
Then (xpPix*) holds and o(x*,Pi) < p(x*,p) = o(x,p) < D(X,Pi)
by properties of betweenness; hence x* dominates x.

Case ITI. Pie§¥§“ (Figure 3.3b)
Then (xpx*Pi) holds and p(x,Pi) = pl(x,x*) + p(x*,Pi) > p(x*,Pi)
by properties of betweenness, and dominance follows.

Case III. PiE;TET (Figure 3.3c)

Then (xﬁfﬁ) holds, as does (x*x'Pip'). Now since,

o(p,p') = m = p(p,x) + p(x,p")




P

p (p’x*) + o) (X)'c,p |)

plp.2) + p(x%*,p"),
it follows that p(x,p') = p(p',x*).
Adding p(p',Pi) to both sides, and utilizing the fact that
(xp'Pi), one has
p(x,Py) = p(p',x¥) + 0(p',By) 2 0(p',x¥)
Since (x*Pip'), it follows from betweenness properties that
p(p',x*) = p(x*,P;) + p(P;,p') 2 P (x*,P;)
Thus p(x,Pi) > p(x*,Pi) and x* dominates x.
Since all possible cases have been considered, the

proof of Part A is complete.

- i< x* X X
’ s/f() .
b Pi ) p
(a) (b) (¢)
Figure 3.3. Theorem 3.4.1, Part A.

Part B. Next, assume V does not lie on a line
through x. By Lemma A.5, there exist exactly two distinct
rays EEI and ;EZ with bl' b2 ¢ bd V such that the lines
?E: and ?BZ are support lines of V and each ray *v for

veV either coincides with Xbl' or xbz, or lies between

;E? and xB%. In particular, QB is between xbl, QEZ or
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coincides with them, so the sum of the angles pxbl and
a;pxbz is no greater than n, and at least one of them, conse-

quently, can be no greater than n/2. We may assume without

loss of generality 4pxb1 < w/2. Now either 4,pxb2 < 2
or L pxb, > n/2. The cases are considered separately.
Case I. Suppose X pxb, < m/2 (see Figure 3.4a).

Let x* = p, and suppose v is any point of V not on lineg—(_;
(there must exist at least one such point under the assump-
tion). If v is on the bk—side of% k= 1. 2) then since
XV coincides with ;(i:( or lies between ;—gl and ;1?2, 4 pxv
< X bkxp < n/2. On the other hand, with v on L or on the
opposite side of L as x, one of the opposing rays from p
on L either coincides with E_\)J or lies between-;’( and 5?/ SO
that ¥ xpv > /2. Hence in all cases &4 pxv < X xpv. If
equality holds, p(p,v) = p(x,v). If inequality holds,
using the properties that the largest side of a spherical
triangle is opposite the largest angle (Kay 1969, Theorem
3L.5);, it follows that p(p,v) < p(x,v). That is, pie*,v)
p(x,v) for all v in V not on line ‘}Z% However, by connected-
ness of V this holds for all points of V. So, for all
demand points Pl. it follows that p(x*,Pi) < p(x,Pi). Domi -
nance of x*tV has thereby been proved for this case.

Case II. Suppose §Lp><b2 > n/2. According to Lemma
A.6 one may choose uz‘)-(-b_2 and x'ebd V such that p(x,u) =
p(u,x") and UX' is a line of support of V. (Figure 3.4b).

In this case put x* = x', Let u' be the antipodal point of u.
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Then both triangles xux' and xu'x' are isosceles. Once

— — —>
again xx' either coincides with xbk or falls between xbl and

xbz. Let v be any point of V not on xx'; then xv coincides

with ;gL, k = 1,2, or lies between them. In the case when
xv lies on ;gz or between g and §§;. ray 273 lies between
ift and §f§ (y is any point on Xx' such that (Btx HDNoE
coincides with x'G. Hence X xx'v > Xxx'u =4 x'xu >

y vxx' and by properties of triangles having unequal angles,
p(x',v) < p(x,v). The same result holds when XV lies on
the other side of line §;h, appealing to equal angles

Ju'xx' and X u'x'x. Again, as in Case I, p(x*,v) < o(x,V)

holds for all veV and specifically for all demand points

Pi = veV, proving dominance of x* in this last case.

u

(b)

Figure 3.4. Theorem 3.4.1, Part B.
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Corollary 341 For the great circle metric, there exists

an optimal solution x* to the problem (3.2.1) such that
x¥* £ conv {Pi|i=l,...,M} = V.
Proof: By using a spherical coordinate system the con-
straint is satisfied implicitly. The result follows from
the observation that if X dominates x, then

M

o wip(XO’Pi) < i_Z:lwip(x,Pi).

=

One need only consider elements within the region since if
there exists X outside of V which is optimal, Theorem
3.4.1 guarantees the existence of an x* within V which

dominates Xq -

IIT1.4.3 Determining Demand Points' Hull Characteristics

In order to apply the foregoing results, it is
of course necessary to insure that the set of demand points
can be contained in a hemisphere. For if this is not possi-
ble, the spherically convex hull is the entire sphere, and
the search region is not reduced at all. The logical
procedure is to coordinatize, plot the points on a sphere
and visually verify whether the set is containable in a
hemisphere.

Blumenthal (1956) defined a global subset as a

subset G of 52 which is not contained in any hemisphere
of Sz. For the case of m=4 points, he established neces-

sary and sufficient conditions for the points to form a

global subset. Clearly for m < 3, the points can be contained

Euntbladba P e SUrl SN 3 N
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in a hemisphere. Nothing is known about the general case
of m > 4,

What follows is a rudimentary heuristic procedure
for determining whether the set {Pi|i=l,...,m} forms a
global subset. First, rank all inter-demand point distances
from the smallest to the largest and select the most distant
pair. Using either of the points, say P transfer the
pole to that point. Rank the longitudes of all the remain-
ing demand points in ascending order, and see if any abso-
lute difference between the longitudes of "adjacent' demand
points (with reference to rank order of longitudes) is
greater than or equal to n. If so, one of the two hemi-
spheres determined by the line through Pk and the point
having minimum of the two longitudes contains the set of
demand points. It is the hemisphere which contains the
point with the maximum of the two longitudes. The absolute
difference between the minimum and maximum longitude of all
demand points (other than Pk) is given by 27 - (max longitude
- min longitude).

If no absolute difference is greater than 7,
choose the other point of the original pair, unless it is
an antipodal point, and repeat the procedure. This is
continued through the list of inter-demand point distances
until either an enclosing hemisphere is found or all points

have been considered.
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IIT.4.4 Summary

In this section it was shown that the search for an
optimal solution can be restricted to the convex hull of
the demand points. Note that if the set of demand points
is not containable in a hemisphere, the convex hull is the
entire sphere, and no reduction in the search area is possi-
ble. The only sets of demand points of interest, then, are
those containable in a hemisphere.

A rudimentary procedure is provided to determine
whether the spherically convex hull is containable in a
hemisphere for a particular set of demand points. Cer-
tainly, based upon these results, one would not pick
starting solutions outside the convex hull when applying

an iterative technique.

IV.5 Analogue Models

Mechanical and electrical analogue models for the
Euclidean norm single facility location problem have been
devised and successfully employed. The purpose of this
section is to extend these models to handle the related

problem on SZ.

ITI.5.1 Mechanical Analogue

A description of the basic analogue model is given
by Eilon et al. (1971), Francis and White (1974), Lyusternik
(1964), and Haley (1962), among others. Utilizing strings

and weights, it was introduced by Georg Pick in the early
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1900's in Alfred Weber's Gber den Standort der Industrien

(1909). Description of a case study using this model is
given by Burstall et al. (1962).

The model which follows will solve the single
facility great circle metric problem (3.2.1). It can be
used for regions as large as a hemisphere without diffi-
culty.

First, a highly polished sphere (to minimize fric-
tion effect) is coordinatized and demand points are plotted.
Holes are then drilled at the demand point locations and
strings are passed through the holes with the ends tied to
a small ring resting on the exterior surface of the sphere.
The other ends are passed through a stationary ring at
the sphere's center. Weights proportional to the respec-
tive demands at each point are tied to the appropriate

strings (see Figure 3.5).

Figure 3.5. A mechanical model.

" ————— st
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The outer ring (on frictionless bearings) is pulled
to one side and then released. The weights will pull the
ring to a point of minimum potential energy at which there
is a local minimum objective function value. Due to the
demonstrated non-convexity of the probtlem, it is possible,
although unlikely, that the ring could start at a local
maximum and not move. For this reason, it should be moved
slightly to one side to see if it returns to the same point.
Local maxima and minima demonstrate points of unstable and
stable equilibria, respectively. The unstable equilibria
occur due to the duplicity of paths between any two points;
that is, the long and short great circle arcs. This property
is treated in detail by Lyusternik (1964).

In regions larger than a hemisphere physical diffi-
culties can arise in the model as the ring approaches a
point y antipodal to a demand point x (p(x,y) = m). At
such a point there are an infinite number of paths of equal
length to the antipodal demand point. Yet, by moving an
arbitrarily small distance in any direction, the shortest
path becomes unique. The difficulty arises in the physical
slipping of the string to a position 180° opposite to the
existing position just prior to the ring's passing through
the antipodal point. Friction and interference from other
strings would prevent free movement of the ring in such a

case.

The advantage of this model is that rough estimates
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of location for local optima can be found visually rather
quickly by starting the ring at various places around the
sphere, thus providing good starting solutions for any
iterative technique.

Disadvantages include the friction effect, which
may make the final position of the ring indeterminate. Due
to the curved surface and necessity of the ring at the center
of the sphere it can be expected that friction will have a
greater effect than in the corresponding model for EZ.
Also, the non-convexity of the problem results in the pos-
sibility of only getting local minima and missing the global
optimum.

As mentioned by Eilon, et al. (1971), perhaps the
greatest disadvantage is the fact that the method does not
evaluate the cost function. The next model resolves this

difficulty and essentially eliminates the above mentioned

disadvantages.

IITI.5.2 Electronic Analogue

Hitchings (1969) recognized that most of the
literature on location problems to that date was confined
to problems in the planar state. He addressed the solution
of problems in E3 and developed an electronic analogue model
to solve these problems.

Hitchings' model can effectively be modified to
solve the problem in S2 space using the great circle metric.

One must utilize a non-conductive sphere, set up as in the
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mechanical analogue model. The string, however, is replaced
by resistive wire in which distance is proportional to the
length of the resistor. Weights are needed solely to insure
that the wire conforms to a geodesic path on the sphere.

The varying weights of the demand points are accommodated
via changes in resistivity of material or cross-sectional
area of the wire. As pointed out by Hitchings, such a

model can even handle nonlinear costs by segmenting the
wires into appropriate lengths and varying resistances.

Based upon a slide-wire concept, the model's cir-
cuit diagram (Hitchings 1969) is similar to a Wheatstone
bridge circuit. The difference lies in the fact that the
objective is to maximize current flow rather than find a
null point. Note that for a fixed voltage, maximization
of current flow is equivalent to minimization of overall
resistance, which in turn is the analogue of the objective
function for the single facility location problem on the
sphere.

Attaching a pen to the ring on the sphere's surface,
isocost lines may be easily plotted by moving the pen while
carefully maintaining a constant current flow. In this
manner contours can be plotted to reveal local minima.

From this information it is simple to determine the location

of the global optima (point(s) of maximum current flow).

The advantages of this model over the previous one

are obvious. Relative cost function values are available
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via current flow values, friction has no effect, and with ]
a little care problems for regions larger than a hemisphere
can be handled. Since contours are available, the model
may be useful when considering practical problems with | !

geographic infeasibilities.

ITII.6 Steiner's Problem and Fagnano's Result

IIE.6.1 Introduction

Consider the problem of determining for a triangle
in the plane the point at which the sum of distances from
the point to the vertices is minimized. This is a special
case of the single facility location problem where all
weights are equal. It is known that if any angle of the
triangle equals or exceeds 120°, the optimum occurs at the
vertex of the obtuse angle. If all angles are less than or
equal to 1200, the optimum is interior to the triangle at a
point at which each side of the triangle subtends an angle
of 120°. A recent elegant proof of the former property
has been given by Sokolowsky (1976). Proofs of both proper-
ties are provided by Courant and Robbins (1941), among
others.

Called Steiner's Problem by many, it has a long
history which is succinctly outlined by Cooper (1963).

Also mentioned by Cooper is a result due to Fagnano in
1775 showing that the point for which the sum of the distances

from the vertices of a quadrilateral is a minimum is given
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by the intersection of the diagonals. The purpose of this
section is to consider extension of the above results to

the problem on the sphere.

IIT.6.2 Steiner's Problem on the Sphere J

Consider three demand points on the sphere with
equal weights. Suppose an optimal solution, local or

global, is known. Using the optimal point as pole, trans- ]

form the points to the plane with an Azimuthal Equidistant
Projection (Deetz and Adams 1948). Such a projection pre-
serves distance and bearing to other points from the polar
point.

The image of the polar point transformed from the
sphere is globally optimal on the plane. Suppose it
were not optimal on the plane. Since the problem is
convex (Love 1967), a move could be made over an arbi-
trarily small distance § > 0 in some direction and yield
an improvement in the objective function value. Since it
can be shown that the objective function value on the plane
is greater than value on the sphere for the corresponding

point (see Section III.10.2) there would be an improvement

by moving in the same direction and distance on the sphere. |
This contradicts the fact that a local or global optimum
is reached on the sphere.

Since the point is global on the plane, it is
known that all angle measures subtended from the triangle

sides are > 120°, with strict inequality holding only when
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the point is a vertex. The projection used preserves
angles at the polar point so the property is retained at
the inverse image--which is a local or global optimum on
the sphere.

It is important to note this result is a necessary
condition for global optimality on the sphere. It is sus-
pected, but not proven, that if the points are such that no
side of the spherical triangle is of length > 7/2, then if
any vertex angle is 120° or larger, its vertex is the global
optimum. Otherwise, the global optimum is at the interior
point at which each side of the triangle subtends an angle

of 120°.

III.6.3 Fagnano's Result on the Sphere

Suppose four equally weighted points determining
a convex quadrilateral (Kay 1969) are on an open hemisphere
and the optimal point is XS*. The optimal point occurs at
the intersection of the small great circle arcs.

Given the optimal point, project tc the plane via
the Azimuthal Equidistant Projection. Distance and bearing
are preserved from point Xp on the plane corresponding to
XS*.

On the plane the optimal is determined by intersec-
tion of the diagonals. The optimal point must coincide
with Xp. For if Xp is not optimal on the plane, then improve-
ment can be made by moving an arbitrarily small distance

§ > 0 in some direction from Xp to a point X'. Now, as

4
{
1
|
|
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stated in the previous section, the objective function
value of X' for the Euclidean norm is strictly greater than
the objective function value obtained for the great circle
metric using the point corresponding to X' for the problem
on the sphere.

This means there is a point on the sphere dominat-
ing the global optimum--a contradiction.

So Xp and XS* are optimal on the plane and sphere
respectively--and are corresponding points via the transforma-
tion.

Through the properties of the projection, the angles
and distances are preserved at Xp and XS*. It follows
immediately that the desired property of the global solution
at Xp extends to the sphere's global solution as a necessary

condition.

IIT.7 A Conjecture Concerning Global Optimality

In working with the problem on the sphere, and
after plotting a number of example problems three dimen-
sionally, an interesting characteristic came to light.
Although not established theoretically, it is important to
report since its validity would significantly impact on

conclusions concerning global or local optimality.

Conjecture 3.7.1 If (1) all demand points for problem

(3.2.1) are located within an octant of the unit sphere, or

a disk of diameter < 7w/2 and (2) at least three of the
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demand points are non-collinear, then the objective func-
tion is unimodal within the region.

The conjecture incorporates two fundamental assump-
tions. First, that there exists a unique global minimum
within the region. This is assured by requiring non-
collinearity of demand points. Second, the characteristic
of the objective function under this assumption is unimodal.
An explicit discussion of generalized unimodality in n-
dimensions is provided by Sivazlian and Stanfel (1975). A
function f is said to be unimodal over a region S if there
exists a path from xeS to the global optimum x* over which
f is strictly decreasing.

If this conjecture is true, then a convergent
algorithm searching over the region will result in a
global optimum. This follows since the dominance results
of Section III.4.2 permit the search for a global to be
restricted to the spherically convex hull of the demand
points. The conjecture eliminates the possibility of having
local minima within the region.

A typical contour of a problem with the given
properties is found in Figure 3.6. It plots the objective
function values for the six point unequal weight minisum
problem using the Data Set D3 of Appendix B.

Concerning the disk of diameter n/2 and the octant,
both regions can contain sets of demand points not contained

in the other. The octant, also known as the Reuleaux
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Triangle on the sphere, has the smallest area of all figures
of equal altitude. Using techniques of Chapter IV it is
possible to determine whether the demand points are located
in a disk of diameter < m/2. It is not so easy to determine
analytically whether all points are contained with an
octant. However, one can always plot the points on a

sphere and use an overlay.

It is suspected that the unimodality property is
related to the fact that many Euclidean-1like properties
hold in such regions (Kay 1969). These properties hold
since no distance between any demand points or between a
possible location and any demand point is greater than or
equal to m/2. In such regions, for example, it is known
that the hypotenuse of a spherical right triangle is the
longest side. This property, among others, does not hold

in the general case.

III1.8 An Approximate Solution

Wendell (1971), formulating the problem as (3.2.3),
approximated the objective function by recognizing that
Arcsin y 2y ny2/2 for ye[0,1]. Through Schwartz's inequality,

the solution to the revised problem is seen to be
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Wendell offers xO* as an approximate solution to (3.2.1).
Through simple algebraic manipulation it can be

. and projected to

shown that if the centroid is found in E

the spherical surface (normalized in the case of the unit

sphere), the resulting point is equivalent to xo*. That

is, Wendell's approximate solution is the projected centroid.
As will be seen in Chapter V, it is not difficult

to construct examples in which the projected centroid is

far from the optimal solution, nor can one always success-

fully utilize it as a starting solution in any iterative

technique in order to find a global optimum. It is not

without value, however, as will be discussed later.

ITI.9 Bounds for Unconstrained Objective Function

In this section bounds are generated for the uncon-
strained great circle metric single facility location problem.
The results are an extension of those due to Pritsker and
Ghare (1970) for the Euclidean problem.

The bounds are based upon optimal solutions for the
rectilinear and Euclidean norm single facility problem in

E3. As mentioned earlier, efficient procedures exist for
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solving these problems.

The bounds are:
[R2(xP)+R2(yR)+R2(2R) 1% < Ax®) < axD) (3.9.1)

EXE) < ax®) < ah (3.9.2)

where: XR = (xR,yR,zR is the optimum rectilinear solution,

XE = (xE,yE,zE) is the optimum Euclidean solution,

o (xo,yo,zo) is the optimum great circle metric

X

solution,

and R(x), E(x), and A(x) are the objective function values
for the rectilinear, Euclidean and great circle metric
problems, respectively.

Note that although the bounds in (3.9.2) are more ''costly"

to compute, they will in general be the tighter of the two.

This becomes evident in the derivations which follow:

The right hand inequalities are both clearly true

for the optimum of the objective to minimize A is XO, SO

A% < A(X) for all X.

In particular, A(XO) < A(XR) and
ax% < axby.
The fact that A(XO) > E(XO) is intuitive, but can be

established geometrically. Concerning the relationship

~\
between arc ANB and chord ASB (see Figure 3.7), note that

~N p— ——
Z = % ANB, and SB = % ASB.
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Figure 3.7. Relationship between chords and arcs.

Now, without loss of generality ¢ can be limited to
the region [0,7/2]. Consider the right triangle NSB where
d NSB = n/2. Since the hypotenuse of a right triangle is
the longest side, NB = SB. The shortest distance between
any two points is a straight line so ﬁ% > E%, and it fol-
lows that Z = NB Z SB. So ASB = KEB.

Since A(XO) is a weighted sum of great circle
arcs of form &ﬁ% and E(XO) is the corresponding Euclidean
sum, Ax?) > Ex?).

Clearly E(x%) < E(xY). oOtherwise the optimality of
XE for the Euclidean norm is contradicted. This estab-
lishes (3.9.2).

For (3.9.1), application of Minkowski's inequality
establishes that E(X%) > [RZ(x®) + RZ(yD) + RZ(2}) 1% and
the bound follows via transitivity.

Since XN is optimum for the rectilinear problem one

has that

[RZ(XR)+R2(yR)+R2(zR) l% < [Rz(xE)+R2(yE)+R2(zE) 155
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Now,

E 2
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which, by Minkowski's inequality is

= */?;1|XE'31’)ZI(WIIYE'bll)2+(wlle—cﬂ) Py

E < E 2 E 2
+S @yl xB-a, D%+ @ lyEb D3 [ 25c )
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'lei.\/>(xE-ai)2+(yE—bi)2+(zE—ci)2 = E(xE,yE,zE)
i=

E(XE)

III.10 A Planar Projection Algorithm (PPA)

II1.10.1 Introduction

In this section the first of two algorithms for the
minisum single facility location problem is developed.
It capitalizes on existing solution techniques for the
planar case and makes use of the fact that isometric
(distance-preserving) transformations from the sphere to
the plane from a single point are possible. The appropriate
transformation is well-known to geographers as the Azimuthal
Equidistant Projection.

As will be seen, a fundamental step in the algorithm

is based upon an iterative technique for the Euclidean norm
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problem developed independently by Cooper (1963), Kuhn and
Kuenne (1962), and Weiszfeld (1936). A modified algorithm
is used; namely, the Hyperboloid Approximation Procedure
(HAP) due to Eyster et al. (1973), which circumvents the
difficulties of non-differentiability at demand points.
In the plane, the original iterative procedure for the
single facility problem is guaranteed to converge to the
optimum location. A discussion of convergence properties
is given by Weiszfeld (1936), Katz (1969, 1974) and Kuhn
(1973). The iterative procedure has been found by Cooper
(1963) and Eyster et al. (1973), among others, to solve
the problem with excellent results. With this in mind,
it would seem advantageous to employ the technique in

solving the problem on the sphere.

The basic steps of the approach follow:

(XS on sphere, XP on plane)

STEP 0: Designate starting point XOS. Set k = 1.
Set stopping criterion parameter,e¢.

STEP 1: Perform Azimuthal Equidistant Projection
to Euclidean plane using Xi—l as the polar point; note that

the point corresponding to X

L e —— ——

S i X g = 0,03,
STEP 2: Employ HAP algorithm using Euclidean norm

o]
k—le

-

to find global optimum Xi in plane. If |XE—X €.,

stop. Otherwise, go to Step 3.
STEP 3: Perform inverse transformation on Xi and
g return to sphere to get Xﬁ. LE |¢(Xi)—¢(xi_1)| < ¢, where ¢
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is the objective function, stop. Otherwise, let k = k+l
return to STEP 1.

In the paragraphs that follow, the mathematical
bases for STEP 1 and STEP 3 will be examined. STEP O
is discussed in Section III.12. For a detailed discussion
of HAP (STEP 2) refer to Eyster et al. (1973).

A specific advantage of this approach is that while
solving the problem on the plane one is working with a
convex problem. Via the projection one can consider
problems with demand points scattered around the entire
sphere without using approximations to great circle dis-
tances. Also, under the projection the number of non-
differentiable points is halved since there is no problem

with antipodal points on the plane.

IIT.10.2 Convergence Properties

As stated, it is known that the general iterative
technique converges to a global optimum on the plane.
Unfortunately, convergence of an iterative algorithm can
only be guaranteed to a local minimum in the general problem
on the sphere due to its non-convexity. Assuming a con-
vergent algorithm is used in the plane, this guarantee can
be made by verifying that each iteration of the algorithm
will result in a strict improvement of the objective function
value. That is, each time one projects to the plane and

then returns to the sphere, any movement in the location
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of the servicing facility will result in a strict decrease
in total cost.

Starting with XO on the sphere as a pole, project
to the plane using the Azimuthal Equidistant Projection.
Suppose X* is the global optimum on the plane for the
projected demand points. Assume it is distinct from the
image of XO’ Xp' That is, assume Xp is not globally
optimal on the plane. If di is the image of demand point
Pi for each i and XS is the inverse image of the planar
optimum X* on the sphere, it follows from the cosine ine-
quality for elliptic geometry (Kay 1969) that (see Figure
3.8) :

Sphere Plane

Figure 3.8. Cosine inequality for elliptic
geometry.

All geodesic distances and angles from Xp are iso-
metric to the corresponding great circle distances and

angles on the sphere. All other distances are distorted on

the plane to larger than the actual distance.
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For the inverse image point XS, then,

i M
i wiIX —diIQZ > iil wiu(XS,Pi)

Il ==X

i
Also, due to properties of the projection, and the

fact that X* is global on the plane it follows that

M M M
= = > o
oy Pt ol w; X, dilxz 2 b wy [ X dilﬂz
M M
Thus iil wip(XO,Pi) > iilp(XS’Pi) and strict

improvement is guaranteed.

The question arises as to when one can expect the
location of the servicing facility to move during the search
for a global optimum on the plane. For, if no movement is

made from the polar point X_, there will be no change in

P

the objective function value.

shown that the characteristics
tives on the sphere and on the
if the partial derivatives are
problem, they will likewise be

problem. By employing a modif

With this in mind, it is

of the first partial deriva-
plane are similar. That is,
non-zero in the sphere
non-zero in the planar

ied gradient approach in the

spirit of Kuhn (1973), there is no difficulty in assuming

differentiability even in the situation when the polar

point is a demand point or its

antipodal point.

Now, the convergent algorithm in the plane will

result in movement from a non-stationary point to a sta-

tionary point. So if the foregoing is established one is

guaranteed of achieving a strict improvement in any iteration
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which projects from a non-stationary point on the sphere.

Theorem 3.10.1 Given an Azimuthal Equidistant

Projection from a point XO on the sphere, let Xp be the
corresponding point on the plane via the projection.
Suppose the first partial derivatives of the objective
function on the sphere exist and are non-zero at XO' Then
the first partial derivatives of the planar objective
function are likewise non-zero at Xp.

Proof: The approach is via contradiction. Without
loss of generality, the coordinates on the sphere can be
translated so that XS = (@x,AX) = (0,0) in colatitude,
longitude. Under the projection, of course, Xp = (XX,YX) =
(0,0).

Suppose the first partial derivatives at Xp vanish
in the plane. The proof will be established by showing that
the first partial derivatives vanish for the corresponding
point XS = (0,0) on the sphere.

Since the Euclidean metric is used in the plane

we have
if(xx’Yx) . ? wi(XX-ai) o ? -w.a, g
B 1910(X_-a.) 24 (Y_-b.)21%  i=1(a’4b2)*
0.0) % i X i |
=0
af(Xx,gﬁl E ? wi(Yx—bi) . ? -wibi
e = r =
My =10 (X, -a) (Y, -b ) 21%  i=1(a’4b))*
(0,0) 1 b 8 &

=0
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Now, under the projection it is seen that for a
point Pi = (¢i,Ai) on the sphere, the corresponding point
in Cartesian coordinates is (ai’bi) where a; = ¢icoski,
b, = ¢isinki. This, of course, is contingent upon the

projection being from X = (0,0).

By substitution:

N M w;dgzasty Y %
z = I = W.COSA .,
e Pty s e 2 X 2.5 i g
i=1 (ai+bi) i=1 [(¢icosAi) +(¢131nAi) ] i=1
=0
M
Similarly, £ w.sinA, = 0
i=] * 3

Using the form of the objective function as (3.2.7),
the following necessary conditions arise:

M ‘Wi(-COS¢181n¢+31n¢icos¢cos(A-Ai))

¢ i
i=1 ‘/1—(cos¢icos¢+sin¢isin¢cos()\-Ai))2
3y _ ? -wi(sin¢isin¢[sinAcosAi—cosXsinAi]
FR

L \/I;(Cos¢lcos¢+sin¢isin¢cos(A-Ai))2
Looking specifically at when (¢,1) = (¢_,A)

= (0,0) it is seen that:

? -w; (cosd,sin0+sin¢,; cosOcos(-1;))

(0,0) Al W‘1-(cos¢icoso+sin¢isin0cos(-Ai))z

v

C

J
I

]

M —wi51n¢>icos)\i g

>
=1 </ 2 i=1
l-cos ¢i

o <

i

- w.cosA, =0
i i
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Also,
3% g ? —wi(sin¢isin01sinOcos)\i—COSOSinAil)= :
3 i —=
(0,0) o V1-cos“¢,

This completes the proof.

The question of whether the algorithm converges
when used with a convergent algorithm in the plane is not
really appropriate in this case since the planar search is
done with an efficient algorithm that uses a heuristic

as a stopping criterion.

IIT.10.3 The Azimuthal Equidistant Projection

In this section the mathematical formulations used
for projecting to the planar surface are developed. This
is essentially STEP 1 of the three major steps outlined
in Section III.10.1.
Letting (¢,A) represent the spherical coordinates
in colatitude (0<$<m) and longitude (-7<A<m),6 the projection
from the North Pole to the plane is trivial. Using polar
coordinates, (r,Y9), the mapping transformation is simply:
r=¢
6 = A
where 0° longitude, the Greenwich Meridian, transforms to
the positive X axis in a Cartesian system, and the South Pole

is a singular point arbitrarily placed at (7,0). The

Cartesian representation (x,y) is then:
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74 ¢cosA

]

y psinA

As mentioned earlier, this particular projection
preserves actual distances and bearing from the North Pole.
Error increases as one determines distances between points
non-collinear with a ray from the origin and some distance
from the pole. Recognizing this, the algorithm incorporates

a bound which stops the planar search whenever the movement

exceeds a fixed distance from the pole.

ITTI.10.4 Transformation of Poles

In the Planar Projection Algorithm (PPA) one is
unfortunately hardly ever projecting from the North Pole.
It is desired to project from points all over the sphere,
namely, the best point achieved in the previous iteration.
This requires a method to transform the spherical coordinate
system so that the "North Pole" is at the desired pole for
projection. The transformation to the plane, then, is
trivial.

Using a concept familiar to navigators, it is possi-

ble to transform the coordinate system without ambiguity
from one pole to another. The concept to be utilized is

the haversine, where

have = %(1l-cosf) = Sinz(ﬂ/z)

Transferring from the North Pole to new pole (OO,AO), the

new coordinates (Zi’ai) for each demand point Pi = (¢i,Ai)




56

are given by Maling (1973):

]

. "),—(, 1 ('v_\‘ (00} £ / _,'
havZ; haqu1 rol + Sln‘1QInLthvl\o v

hava (hav@i-haviv:wo—zil)csc@ocsczi

Using inverse trigonometric functions, one can
solve for (Zi,ui), the bearing and distance coordinates
from the new pole to all demand points Poo Bk, .00 1.

The end result, after projection to the plane, is
a planar representation of the sphere with true distances
from the new pole to all points P, and only "small" error
in distances from other locations to the P, in regions near
the pole.

Solving for Zi:

havz; = havl@i~¢ol + s1n®i31n¢ohaleo—xi|

$.=-0 A=A
%(1—cosza = sinz( 12 0) + sin¢isinwosin2(—97—£)

Thus :

¢o.-9 An=-A.
.0y + sin¢isin¢osin2( 02 1yy} (3.10.1)

Z; = Arccos{1-2(sin’(

Solving for @

haVai = (hav¢i - havj:o—zi])cscd»ocsczi

¢. $n=Z.
%(l—cosui) = \sinz(ji) - sinz( 02 l)]csc%csczi

Thus :

0. $n=2,
ay = Arccos{1-2[sin2(7£) - sinz(-97—£)1csc¢0csczi} (3.10.2)
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Although oy is undefined when either ¢O or Zi are
0 or m this is easily resolved by arbitrarily defining %
to be 0 since one is at the North or South Pole. Z; is
defined as either 0 or 7, whichever is correct.

Observing that the range of & E A R
it is obvious that there will be ambiguity as to the proper
sign due to the range of [0,7] for the Arccos function.
Now, the azimuth oy is in reference to the shortest great
circle arc from the new pole to the old pole, which is the
new zero meridian. In order to determine the proper sign

it is necessary to check the sign of (XO—X). The cases in

Table 3.1 apply.

[ Xg-A| < w |A0'l| > T
A=A > 0 & = O A, = - o
0 = ) il 18 L
XO-/\ < 0 o, = -ui Otl = (xl

Table 3.1. Sign of Azimuth.

An example of the case where [My-A| < 7 and

Ag~? > 0 is seen in Figure i - !
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Figure 3.9. Determination of Azimuth (longitude)
sign.

ITI.10.5 Returning to the Sphere

Consider now STEP 3 of the three major steps in
Section III.10.1. Prior to beginning the next iteration
and after optimization on the plane it is necessary to
return to the sphere. This is done by converting the
globally optimal point (X*,Y*) to spherical coordinates
using

[ (X% 24+ (y*)2 )% (3.10.3)

I

¢
A

Arctan(Y*/X*)

Ambiguity regarding the sign of ) is easily handled. Once
on the sphere it is simple to transform the pole back to
the North Pole, using the procedure of STEP 1. 1In this way
the point (X*,Y*) is expressed in spherical coordinates

with the North Pole as pole.

IIT.10.6 The Algorithmic Procedure

Utilizing the results and mathematical development

of the previous section, the following algorithm is obtained.
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Terminology and notation used in any iteration, ITER, are:

BOUND = upper bound for movement of search on plane
before returning to sphere

ERil = stopping criterion for movement on the plane in
one ilteration

EP2 = stopping criterion for change in objective
function value on the sphere using (EP2)xF,
where F is the current objective function value.

K = (0,1). K =0 if starting solution is to be
projected centroid. K = 1 otherwise.

N1 = bound on major iterations

M = number of demand points

wj = weight of demand point j

¢j = colatitude of demand point j in radians

Aj = longitude of demand point j in radians

1. Input parameters BOUND, EP1, EP2, K, N1, M
and demand points (@j,kj) with weights wj 70 il L SR B

2. 1f K= 0 go to step 3. Otherwise, go to step 4.

3. Calculate the projected centroid (x@o,x\o)
for starting solution. Go to step 5.

4. Input (x¢0,x\0).

5. Using (3.2.6) calculate initial objective
function value on the sphere letting (xho,xko) be the
servicing facility. Call it OBSPH.

6. Set ITER =1, x¢ = xbqs and x\A = xAO.

7. 1If ITER > N1, go to step 18. Otherwise, go




to step 8.
8. Transform pole to (x¢,xr). Designate new
coordinates of demand points as (%Tj,*Tj) for j = 1,.. .M,

Coordinates of North Pole are (waP,xANP).

9. Set Fy = OBSPH. .
10. Transform all demand points (0T,,AT;) from !
spherical coordinates to Cartesian coordinates via the

Azimuthal Equidistant Projection. Designate them as
A Bl
( 3 J)
11. Using the Hyperboloid Approximation Procedure
(HAP), or any other Euclidean norm singlce facility algorithm,
2
solve the problem in E~ for the global minimum (X*,Y*).

12. Check to see if the first stopping criterion

is satisfied. If ((X*)2+(Y*)2J% < EPl then do steps 13
through 15 and go to step 18. Otherwise, go to step 13.

13. Transform (X*,Y*) from Cartesian to spherical
coordinates, thus returning to the sphere with (x¢,xA)
as pole to get (x¢*,xA*).

14. Transform the pole at (x¢,xA) back to the North
Pole (x¢NP,xANP) to get (x¢*,xA*) in terms of the North
Pole. Call the new point (x¢,xA).

15. Using (3.2.6) evaluate the objective function
OBSPH on the sphere, letting (x¢,xA) be the servicing
facility. Go to step 16 (unless stopping criterion in
step 12 is satisfied).

16. Set FA = OBSPH.

— y
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17. Check to see if the second stopping criterion

is satisfied. If IFA-FB[ < (EP2)*F,, go to step 18.

A)
Otherwise, go to step 7.

18. Stop.

II1.11 A Cyclic Meridian Search Algorithm (CMS)

I11.11.1 Introduction

Recognizing that an appreciable amount of time 1is
required for calculation of the gradient in the planar
search and in transforming back and forth from the sphere,
one can reasonably consider the possibility of both search-
ing entirely on the spherical surface and avoiding the
use of derivatives. Another factor to encourage such an
approach is that due to the way a gradient search functions,
it will proceed downhill to a local optimum once it is

within its "region of attractiveness.'" A derivative-free
approach may be able to avoid local optima.
Two questions come immediately to mind. That is,

how should one choose a search direction, and how should

the line search be made. Two simple procedures were used.

I[IT.11.2 The Search Direction

Concerning search directions, the developed
algorithm always searches, in each cycle, in a direction
orthogonal to a meridian along a great circle track and
then along a meridian. This cycle is repeated until an

initial stopping criterion is satisfied. At that juncture
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random search directions are tried in order to further
improve the objective function value. This procedure
helps to avoid getting stranded on ridges and in valleys--
as can happen in a cyclic coordinate (one at a time)
search on the plane.

The occurrence of such ridges and valleys on the
sphere can best be demonstrated via example. Consider
the four point single facility location problem using data
set D4 of Appendix B, depicted in Figure 3.10. The global
optimum in degrees of latitude and longitude is at approxi-
mately (33,57), yet a cyclic search that does not incorporate
random search directions could get stuck at the point (0,20)
even though it is clearly not a local minimum. This would
happen if the optimization started with 20° longitude as a
fixed meridian and a line search along it converged to
(0,20). At this point an orthogonal search would be along
the great circle arc which is identical to the Equator,
or 0° latitude. Such a search would not decrease the value
of the objective function so the algorithm would terminate
at (0,20).

The cyclic search process can be quite slow around
ridges and valleys due to a tendency of the search to zig-zag
along them. This is discussed with regard to this four point
problem in Chapter V. Overall, however, the algorithm
seemed to be quite efficient when compared to the planar

projection method.
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Appendix B.

3-D minisum function plot; Data Set D4,

Figure 3.10.
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It is easy to visualize that although search direc-
tions are orthogonal within each cycle, the actual direction
of search on the sphere can be in any direction--except in
a pathological case when the line search in a fixed direc-
tion moves an exact multiple of 7/2 at every iteration.
This property in itself would appear to make the technique
more powerful than the counterpart cyclic coordinate

descent algorithm on the plane (Zangwill 1974).

I1I1.11.3 The Line Search

Regarding the line search, it must be recognized
that although the search along a geodesic (meridian) in
any direction from a pole is bounded by 7, the objective
function is not in general unimodal over the search region.
As a result, the standard efficient line search techniques
(Fibonnaci, Golden Section) will not guarantee a global
optiimum. Also, since local optima exist in the general
problem, one should give thought to techniques of escaping
them when at all possible. It turns out that an adaptation
of a simple search technique due to Bazaraa (1975) will
perform a good line search and in many cases avoid local
optima, especially when the local optima's region of attrac-
tion are relatively small and the obje;tive function's
surface is not too flat.

The algorithmic steps of the line search will be

described in the next section. A general outline follows:
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Given the objective function where f£(¢*,1) = Z*
where A is a fixed meridian--along which the line search
is being made--check to see if f(¢*+e,A) or f£(d*-£,A)
results in a decrease in the objective function value for
arbitrarily small ¢ > 0. 1If neither decrease the objective
function value the search is terminated. Suppose it is
determined that f(¢*+c,A) is the appropriate search direc-
tion. The intent of the search then is to increase the

colatitude ¢

as much as possible for fixed A, all the while
decreasing the objective function value. Choosing an
initial step size & > 0, and an initial acceleration

factor S = 1, evaluate f£(¢*+SA,A). If £(¢*+SA,A) < Z*,
then Z* is replaced by f(¢*+SA,1), ¢* is replaced by ¢*+S4,
S is replaced by «S (a>1), and the process is repeated
until the first failure is encountered. If only f(¢*-€,X)
had decreased the objective function value, then S would be
replaced by -1 and the colatitude ¢ would be decreased as
much as possible.

When the first failure is encountered, the step
size A is decreased and the process continued. This
reduction in step size takes place after each failure until
the minimum step size results in a failure. In this case,
an approximate minimum (possible local) of f is ¢*.

A prominent feature of this approach is the fact
that the initial step size A is a parameter that can be

controlled so that in many cases it is possible to step
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out of the range of a local optimum. A graphical picture

of this is in Figure 3.11. Note that the first evaluation
gives f£(¢*+A) < £(¢*) and the local minimum is escaped.

It must be emphasized that selection of A has a pronounced
effect on success in escaping local minima, and little is

known a priori as to appropriate choices.

- — - e - -
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Figure 3.11. Escaping a local minimum.

III.11.4 The Algorithmic Procedure

Armed with the foregoing preliminary comments, the
Cyclic Meridian Search (CMS) Algorithm is now described.
The following notation and terminology is used:

S

initial acceleration factor (=1)

.
=
|

= acceleration factor for step size (>1)

=2
1l

switching factor for reduction of basic step

size
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5 = small step size used to find direction (¥) of

search on fixed meridian

Al = initial step size

AMIN = minimum step size

AINC = incrementel step size

K = (0,1), K=0 if projected centroid is to be
starting solution; K=1 otherwise.

M = number of demand facilities

wj = non-negative weight associated with demand
point j

¢j = colatitude of demand point j in radians

hj = longitude of demand point j in radians

ITBOUN = bound on number of cyclic searches

EPL = stopping criterion for search movement

EP2 = stopping criterion for improvement in objective
function using EP2*(F) where F is the current
objective function value

LRANBO = number of random search directions employed

once either stopping criterion is satisfied

1. Input parameters a, M, Al, AMIN, AINC, K, €,
ITBOUN, EPl, EP2, LRANBO, and demand points (¢j,xj) with
weights Wj for j = 1,... M.

2. If K=0, go to step 3. Otherwise go to step &.

3. Calculate the projected centroid (x¢0,xAO) for
starting point. Go to step 5.

4. 1Input starting point (XQO,XXO).
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3 Se bk = x¢ s AR = xA .

5 t ¢ '0 X 0

6. Calculate initial objective function value on
the sphere using (3.2.6), letting (¢*,A*) be the servicing
faciliey. @all 4t FIN'

7. Fix the meridian at A*, and perform a line
search from ¢* to get (x¢,x)) and FS, the objective function
value (an improvement over FIN)'

8. Set Fon = PS.

9. Set ITER 0.

it

1@. Set ITER ITER + 1, LRAN = 0.

11. Set up a search from the current pole along
the meridian ¥ n/2. Set (¢*,A%) = (0,7/2).

12. See if the bound on iterations has been exceeded.
If ITER is less than ITBOUN, go to step 13. Otherwise go
to step 33.

13. Transform the pole to (x¢,xA) using procedures
in Section IIL.10.4 Store North Pole as (éNP’\NP)'
(pNP’ANP) is required in step 28.

14. Fixing the meridian at A*, perform a line
search from ¢* to get (x¢,x}) and FN' the corresponding
objective function value.

15. Check to see whether a random search direction
has been used within the iteration. TIf LRAN is greater
than zero, go to step 18. Otherwise go to step 16.

16. Insure that two orthogonal searches are per-

formed before checking stopping criteria. The two searches
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complete a cycle in the two dimensional spherical space.
In each cycle the first search is performed along a great
circle arc orthogonal to a meridian when the North Pole
is the polar point, and the second search is along a
meridian. The pattern of such a search is depicted in
Figure 3.12. Observe that as the region of search gets
smaller, the search closely approximates a cyclic coordi-
nate search in Ez.

If »* = n/2 go to step 17. Otherwise go to step 21.

Figure 3.12. Sample search pattern for cyclic
meridian search.

17. Set up values for use in testing stopping
criteria after completion of second half of cycle Set
Fl = FS - FN’ Xpy = x4 and F . = Fg. Go to step 28,

18. If a random search direction has been used

within the iteration, a stopping criterion is tested to

see if it is still satisfied. If {FS—F < EP2(Fy) go to

!
step 22. Otherwise go to step 19.

19. Set F_ = F
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20. The second stopping criterion is tested after
use of a random search direction to see if it is still
satisfied. If |x¢| < EPl go to step 25. Otherwise go
to step 28, and begin a new iteration.

21. This step is reached after one cycle of the

line search is completed--namely two orthogonal searches.

A check is made to see if a stopping criterion is satisfied.

7%

 J e ‘ .
If [Fl +(F -F ) < EP2(Fy) go to step 22. Otherwise go

to step 23.

22. Set FS = FN and go to step 25.
23. Set B, = Fy-
24. The second stopping criterion is checked after
) 9 1
a cycle of the line search is completed. If (x¢1‘+x$z):

EP1l go to step 25. Otherwise go to step 28 and begin a
new iteration.

25. This step is reached whenever any of the stop-
ping criteria are satisfied. It enables the algorithm to
make a search in a random direction. Set LRAN = LRAN + 1.

26. Check to see if the upper bound on random
search directions in any iteration has been exceeded.

If LRAN is greater than LRANBO go to step 28. Otherwise
go to step 27.

27. Generate a random number RAN, -1 < RAN < 1,

set ¢* = 0 and let the fixed meridian (line of search)

be A* = RAN(7). Go to step 13.

28. Convert (x$,x\) to coordinates with the
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North Pole as pole using (@NP,%NP) from step 13 and pro-
cedures of Section III.104 for transforming poles. This is
done in preparation for performing the next iteration or
cycle.

29. Evaluate the objective function value on the
sphere using (3.2.6) and letting (x¢,x%) be the servicing
facility.

30. If LRAN is greater than LRANBO, go to step 33.
Otherwise go to step 31.

31. Determine whether the line search cycle has
been completed. If A* = n/2, go to step 32. Otherwise go
to step 10.

il 32. Begin the second half of the line search A
i cycle. Set (¢*,A*) = (0,0) and go to step 13.

H 33. Stop.

The line search procedure, being the heart of the
| algorithm, is now described as a separate entity.
1. Input parameters M, Al, AMIN, AINC, o, N,
(¢p*,X*%), £ and demand points (¢j,Xj) with weights wj.
Let FIN = £(¢%*,A%) .
2. Set ICOUNT = 0. This counter is used in

determining whether the appropriate direction of search
on the fixed meridian has been determined.
1 3. Set R=1. R is a parameter which fixes S

at a proper value, ¥ 1, after each change in step size A.

4. Set & = AL,
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5. Set S = R.

6. Set KO = 0. KO counts the number of accelera-

tions for a given step size.

i KO = KO

8. Check to see how many steps have been made for

Sl

a particular step size A. This permits one to restrict
the search to a maximum size interval. For example, if
Al = .1 radians, S =1, a = 2 and N = 5, the largest move
along a line due to acceleration would be 25(.1) = 3.2,
which is just greater than w. If KO is greater than N,
g0 to step 36. Otherwise go to step 9.

g. 1f ICOUNT = 0, go to step 27. Otherwise go
to step 10.

10. Set ICOUNT = ICOUNT + 1.

L1. Set X¢N = ¢*+S(A) and xA = A*,

12. Due to the bound on colatitude, it is neces-
sary to insure that x&N is never less than zero or greater

than mw. If x¢,, is less than or equal to m and greater than

N

or equal to zero, go to step 28. Otherwise, go to step 13.

Steps 13 through 22 re-orient the direction of search within
the bounds of colatitude and along the proper meridian when

necessary.

13. &£ Xy is less than or equal to 0, go to step
Otherwise go to step 14,

14 Set x¢y = 27=-x0¢,,.
N N
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15. If X* + 1 is greater than ", go to step 17.

Otherwise go to step 16.

16. Set xA = X* + 71 and go to step 22.

17. Set xA = A* - 1 and go to step 22.

18. Set Xby = -XTN.

19. If A* + v is greater than 7, go to step 21.

Otherwise go to step 20.

20. Set xA

il

A% + m and go to step 22.

21. Set xA = A% - A,

22. Set R = -R and S = -S.

23. Evaluate the objective function at (X¢N,xk)
wsing (3.2.6) . [Gall it E.

24, 1f ICOUNT = 0, go to step 31. This means that
the appropriate direction for search along x\A has not yet
been determined. Otherwise, go to step 25.

25. Check to see if a decrease in the objective
function value has been obtained. 1If not, then the step
size must be reduced. If (FS - F) is less than zero go to
step 26. Otherwise go to step 33.

26. Set R = -R and S = -S, and go to step 37.

27. Find the appropriate direction (¥) of search
from ¢* by testing the effect on the objective function due
to a small movement from ¢* to ¢* + € along A*. Set Xy

= ¢* + £ and xA = A*, Go to step 12.

28. Evaluate the objective function at (wa,xA)

using (3.2.6). Call it F.
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29. 1If ICOUNT = 0, go to step 31. Otherwise go
to step 30.

30. Check the stopping criterion to see whether a
decrease in the objective function has been obtained. If
(FS - F) is less than zero, go to step 36. Otherwise go
to step 33.

31. This step is entered only when determining
the initial direction of search. If (F - FIN) is less than
zero, go to step 33. Otherwise go to step 32.

32. Set R = -R, S = -S, ICOUNT = ICOUNT + 1,

F_ = Fiyn and go to step 1ll.

33. Set ICOUNT = ICOUNT + 1, FS = F, ¢* = XUy
A% = x\.

34. Check to see if the proper direction (f) has
just been found. If ICOUNT = 1, go to step 10. Otherwise
go to step 35.

35. Set S8 = w(S) and go to step 7.

36. Set X* = x\.

37. Decrease step size A by AINC.

38. If 4 is less than AMIN, go to step 39. Other-
wise go to step 5.

39. Set x¢ = ¢ xA = A%,

40. Stop.

IIL.12 Starting Solutions

A fundamental consideration in any iterative tech-

nique is what to use as a starting solution. In this
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section the characteristics of a number of approaches will

be discussed.

IIT1.12.1 Projected Centroid

In testing the two algorithms, it was found that

the projected centroid provided a '"good" starting solution.
Often it was in the vicinity of the global optimum, and in
many cases the global optimum was achieved when this point
started the iterative procedure. Finding the centroid

in E3 for the Euclidean norm and projecting it to the
sphere's surface along a vector emanating from the sphere's
center is easy to do analytically. As discussed in

Section III.8, this point was developed as an approximate
solution by Wendell. Intuitively it would seem to be a good
starting solution for a problem with demand points all over
the sphere since the projected centroid would at least

locate one in a hemisphere containing a majority of the

weighted demand.

ITI.12.2 Projected Optimum for Euclidean Norm in E3

Although comparatively more expensive to determine,
this point could conceivably be better than the projected
centroid in certain cases. However, it unfortunately

requires an iterative technique to find it.

III1.12.3 Random Start
One could generate random starting points on the

spherical surface. This is the basis for the most practical




T

76

way to help ascertain whether global or local optima have
been achieved, other than by plotting contours. In the

special case when either the centroid or Euclidean distance

solution in E3 is at the center of the sphere, this procedure

would be an alternative.

IIT.12.4 Demand Points and their Antipodal Points

Starting the iterative procedure at a demand point
or its antipodal point can be informative. Since at most
only a local optimum can be expected in an iterative tech-
nique, a number of different starting points will likely
be tried. Use of a demand point will reveal quickly whe-
ther it is a local optimum or not. If itfis,.future
starting points shiould be selected at some distance from
it in order to try to avoid converging to it again. The

antipodal point certainly fits this criterion.

ITI.13 Avoiding Local Minima

It is well known that a guarantee of an obtainable
global optimum occurs only when the search region is convex
and when the objective function is unimodal in the appropri-
ate form, i.e., convex for a minimization problem. In
working with a non-convex programming problem, as in this
case, one must be concerned with methods of avoiding local
optima. Reklaitis and Phillips (1975) state that all known

techniques except those employing statistical sampling

—em— T

techniques will penerate only local minima. They reference
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work by Clough (1969) and Liau (1973) concerning the sta-
tistical approach.

A standard approach when using iterative (numerical)
techniques is to accept the fact that only local minima
can be obtained and solve the problem a number of times
using random starting points. One could then state with
some degree of confidence that the global optimum has
been achieved--the best solution obtained thus far. How-
ever, there is usually no way of knowing how many local
minima exist and the possibility of a global optimum lying
elsewhere cannot be disregarded.

Intuitively it is seen that many starting points
will result in the same local optimum if they are within
the "hollow'" of that local minimum. Recognition of this
leads to another class of approaches. One could use a
solution for one problem and employ various techniques for
"jumping out'" of the range of the current local minimum.
Hesse (1973) developed a heuristic procedure which fits in
this class. A penalty function based upon an added spheri-
cal constraint is used in order to get away from a local
minimum. In this way an attempt is made to find better
local optima.

A third class of methods attempts to gain informa-
tion about the entire search region (in the case at hand,

either the spherically convex hull or the entire sphere).

Attention would gradually be concentrated upon smaller
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regions which appear, under some criterion, to be likely
to contain the global optimum. An approach using networks
that belongs to this class has been suggested by Robinson
(1972). Hartman (1973) examined six variations of the
three classes, restricting consideration to the "essentially
unconstrained'" nonlinear programming problem:
min f£(x)

stibject to x £ S g;En
where the boundaries of S do not determine the solution.
The restriction to E" is not necessary, so his findings
can be applied to the problem at hand.

In general, Hartman found that for the variations
used, the first two classes performed better than the third.
On difficult problems, though, even the best of the methods
will frequently fail to locate the global optimum. Hartman
also found that the best results were obtained by methods
which do the least random searching.

The subject of avoiding local minima is a fertile
field for further research. Approaches for avoiding local
minima can be adapted successfully to capitalize on fea-
tures of a particular problem, and can even be incorporated
within the search process itself. One feature of the cyclic
search algorithm of Section III.11 is its ability to jump
out of the range of a local minimum during a line
search. The success of this "escape mechanism'" is a function

of the initial step size (parameter Al) and the relative
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deepness of the hollow containing the global optimum as

compared to those containing other local minima.

IIT.14 Application to Multifacility Location-Allocation
Problems

III1.14.1 Model of Problem

In this section a specific class of location prob-
lem, the location-allocation problem, will be considered.

Surveys of work on this problem have been presented by

Scott (1970) and Cooper (l964)i-and an extensive bibliography
has been accumulated by Lea (1973). A general objective in
this class of problem involves determination of the number

of new servicing facilities, their location, and optimum
allocation of demand points to servicing facilities. In

this section, however, it will be assumed that the number

of new facilities to be located is known.

A mathematical formulation of this location-allocation

problem for the Euclidean norm is:

N M 5 5.3
Minimize = ¥ Z:W.l(x,=a.)F(y.=b.) E=NNGa T Ly
i=1 j=1 1y ] 1] 1]
N
Subject to ¥ Z.. =1 j=1,...,M
P i3
i=1
Ly (A
1]
where: wi = weights of demand facilities
(aj,bj) = Pj are demand point locations
M = number of demand points
N = number of facilities to be located
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As exhibited by Cooper (1967) this problem in the
plane is neither convex nor concave, and is hence much more
difficult to solve than the convex single facility problem.
The multifacility location-allocation problem on the sphere
is me less difficult.

Two approaches to the problem in the plane are
evident, and have been developed over the years. One is
via combinatorial programming, recognizing the 0-1 nature
of the variables  ij' A modification of this approach to
solve the counterpart multifacility problem on the sphere
is the intent of this section. The other major approach,
used by Cooper (1967), is via an extension of the single
source algorithm. Although such an approach can only
obtain local minima, it is very inexpensive with regard
to computer time, and is the only efficient approach when
solving very large problems.

Mathematical formulation of the spherical multi-
facility problem is, of course, similar to the planar
formulation, with the exception of the different distance
measure and the ''spherical' equality constraint which
restricts solutions to the spherical surface.

N M

Minimize B e Wi Arccos(a.x%+b.x?+c.x?) (3
i=1 j=1 J b I S [ S
N
P Z.. =X j=1,...,M
j=1
I 2 2y2 S o »
(xi) + (xi) + (xi) = 1 L= 1, ,N
Zij S 15 S )
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where (a., bj’ Cj) = Pj are demand points, and all other
terminology is as in the planar formulation (3.14.1).

IIT.14.2 A Planar Algorithm

Kuenne and Soland (1971, 1972) provide a technique
for solving the location-allocation problem via branch and
bound. A fundamental aspect of the algorithm is sequential
solution of a number of single source problems, for which it
is possible to find a global optimum in the plane.

One can consider direct application of a great circle
metric single facility algorithm in the branch and bound
algorithm. However, since only local optimality is obtain-
able in the general case for the single facility problem
on the sphere, one can expect no better than a local minimum
for the multifacility problem. Also, as will be seen, the
lower bound calculated in the branch and bound algorithm
may not be an actual lower bound. Modifications can be
made, though, to partially resolve these difficulties.

It is interesting to note that Kuenne and Soland
recognized the possible impact of great circle distances
and devised an approximation technique for problems
covering large regions of the earth. It is based upon a
Mercator projection, where distances are computed as rhumb-
line map distances and then converted via an approximation
to great circle distance (by multiplying the distances by

the cosines of the midpoints of the spherical coordinate

latitudes). Kuenne and Soland hold that the approximation
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i will work well for most purposes. The large problem
solved by Kuenne and Soland covered the contiguous United
States, for which a standard Mercator projection is suitable.
However, such a projection will fail dramatically if demand
points are near the polar regions or in regions larger

than a hemisphere.

I11.14.3 Modifications for Spherical Problem ;

Inherent in Kuenne and Soland's algorithm is a
presumption that global optimality can be guaranteed for

the single facility problem. Single facility sub-problems |

are solved and the results are used in development of

lower bounds, feasible solutions and branching points at
each iteration. Noting that the contiguous United States
can be located within a disk of diameter wR/2, where

R is the earth's radius, one can be confident of obtaining
a global optimum (upon accepting the validity of Conjecture
3.7.1). 1t is evident that Kuenne and Soland implicitly
assumed the validity of the conjecture.

Unfortunately, in the general case global optimality

cannot be guaranteed for the single facility problem. This
leads to difficulties in determining a lower bound for the

branch and bound algorithm. As used by Kuenne and Soland,

| these bounds consist of the sum of:
1. cost contributions arising from optimally
locating r servicing facilities to which more than two

demand points have been assigned, and

| ——
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2. underestimates of costs associated with
optimally locating all servicing facilities to service all
unassigned demand points in addition to all demand points
which had facilities servicing only them.

The underestimates of (2) present no problem since
they are based upon inter-demand point distances. No
optimization problem is involved. However, since only a
local minimum can be guaranteed in general for the location
of each of the r servicing facilities in (1), there is no
way to discern whether the sum of differential costs between
the r global and local solutions exceeds the differential
amount between the actual costs of (2) and the calculated
underestimate of (2). If it does exceed the differential
amount, the calculated lower bound would not be an actual
lower bound. In other words, the costs associated with the
local solutions may be so 'bad'" as to overcome the under-
estimated costs of (2).

Considering the general case, then, it is necessary
to modify the Kuenne and Soland algorithm in order to make
it adaptable to the sphere problem. It is important to
point out, however, that validity of Conjecture 3.7.1
will permit direct application of the branch and bound
algorithm (with the spherical single facility location
algorithm as a subroutine) when all demand points can be
contained within a disk of diameter < nR/2 of their

servicing facility.

B U P PP T T —_—.
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The procedural steps for the general case required

at each iteration follow:

For each tentatively located servicing facility K,
check to see if all points allocated to K are contained
within a disk of diameter < mR/2 (this determination of
the covering circle size is accomplished via the pro-
cedures in Chapter 1IV). 1If so, solve for the global
optimum and use the objective function value for the
lower bound contribution. If not, then:

a. solve for the local optimum and use the solution

point as an input in determining the branching point and
feasible solution.

b. solve the unconstrained problem in E3 for the
Euclidean norm. Use the resulting objective function
cost for a lower bound contribution (see Section III.9).
As is evident, the lower bounds will not be as tight as
in the basic algorithm, so fathoming will not generally
occur as early.

Note that once a node is reached where it cannot

be concluded that a global optimum is found, no further
partitioning from that node will ever result in a global

optimum. This is because each branch assigns more demand

points to a servicing facility, not less. Hence, the disk,
or covering circle, can only increase in size.
The advantage of the preceding approach is that a

very good local minimum will eventually result because of
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the implicit examination of all possible demand point-
servicing facility allocations.

Even though incorporation of the single facility
algorithm for the sphere as a basis for the Kuenne and
Soland branch and bound approach requires weakening of the
lower bounds, it is much better than the Mercator approxi-
mation for a problem covering a region as large as the
Eurasian-African land mass. As already mentioned, distances
between extreme demand points would be distorted significantly
in a Mercator Projection using rhumb lines as an approxi-
mation to great circle distances. The single source
algorithms which have been presented are not affected by
the size of the region in determination of inter-demand
point distances, nor are they affected by the region's

location on the sphere.

IIT.14.4 Another Approach

As with any branch and bound algorithm, large
scale problems are generally not able to be efficiently
solved. An increase in servicing facilities (N) along
with a corresponding increase in demand points (M)
would increase the difficulty level significantly (see
Francis and White 1974). So, although a larger number
of sources will increase the likelihood of obtaining a
final solution which can be asserted to be globally optimal,

it is likely the problem will be of such a large scale

as to be essentially unsolvable by branch and bound.
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Recognizing the difficulty of handling such large
scale problems, Cooper has over the years developed a number
of heuristics for the Euclidean norm problem in order to
get a local minimum. Kuenne and Soland (1971, 1972)
coded one and found it extremely efficient. A large number
of local minima can be generated rather inexpensively.
Since the single facility algorithm for the spherical
case can only guarantee a local minimum in general, it
would seem practical to use the heuristic for the sphere
problem.

The basic steps of the Cooper heuristic used by
Kuenne and Soland are:

1. Select N initial servicing facility locations.

2. Assign the M demand points to the closest
source.

3. Solve N single facility location problems
(results in a global minimum on the plane for each sub-
problem; but a local or global minimum on the sphere
depending on whether the N subsets are each contained in a
disk of diameter TR/2).

4. Go to step 2.

The iterative process continues until some convergence
criterion is achieved.

For practical problems, examination of a large
number of local minima may suffice. Cooper (1963) found,

as did Kuenne and Soland, that the objective function is
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fairly flat and hence not very sensitive to changes in
lecation around the global optimum. This property would
appear to carry forward to the sphere. 1In fact, one could
reasonably expect the objective function to be flatter on
the sphere. On the sphere the single facility problem can

even have a constant objective function value for all

points in the domain. This occurs when six equally
weighted points are placed at the intersection of three
orthogonal great circles. Also, the upper bound of 7R on
distances between points limits the total cost at any
location. This is not so for the planar problem since the
cost can increase without bound by selecting progressively
"worse' locations for the servicing facility.

It is important to note that use of the heuristic
can also help in the branch and bound approach by cheaply

generating a good initial feasible solution and lower bound.

IIT.14.5 The Discrete Multifacility Problem

In addition to the formulation of the location-
allocation problem given by (3.14.1), other formulations have
been studied. One variation involves a discrete solution
space and is known as the plant or warehouse location
problem. A treatment of this problem is given by Francis
and White (1974). It has been studied by ReVelle and

Swain (1970), Curry and Skeith (1969), and Shannon and

Ignizio (1970).
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It is of interest to note that a discrete location/
covering problem that closely parallels the objective of
the foregoing can easily be handled for the spherical
case by using existing algorithms.

An efficient heuristic due to Shannon and Ignizio
(1970) will provide ''good" solutions for the problem on
the sphere. The fundamental data base for the algorithm
is a fixed matrix [aij] of distances/costs derived from
interaction between discrete servicing facility locations
Xj and demand points Pi' The matrix, of course, would
incorporate great circle distances, thereby making it
applicable to the sphere problem.

Letting Wjio(X.,Pi) = aij’ the objective is:

min a. .
1]

je6(X)

Minimize Z =

2

i=1

where: 6(X) = {jlxj=1}#¢

ij{O.l} ‘/j

wji is the weight between servicing facility Xj

and demand point Pi

III.15 Summary

In this chapter two new heuristic algorithms have
been presented for solution of the single facility minisum
location problem on the sphere. In addition, several

properties of the minisum sphere problem were discussed,




b

89
and extension of some planar results to the sphere were
presented. It was shown that the search for a global
optimum may be restricted to the spherically convex hull
of the demand points. Application of the solution tech-
niques to solution of a special class of multifacility

problems was discussed.
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CHAPTER IV

MINIMAX SINGLE FACILITY LOCATION PROBLEMS

IV.1 Introduction

In this chapter minimization of the maximum dis-
tance for a single facility location problem on a sphere
in the great circle metric is addressed. This is a natural
extension of the single facility minisum problem discussed
in Chapter III and often is considered to be a more realis-
tic objective. Only the case where all demand point
weights are equal will be considered. Two similar geo-
metric approaches to the minimax problem are presented, as
are a number of properties of the problem.

As stated in Chapter I, in an Qp norm the problem
can be formulated as:

Minimize Z 4. 1.1
X

Subject to IX—Pill < Z
is], ... ;M
where: X is the location of the servicing facility,
Pi is a demand point location, i = 1,...,M, and
Z is (geometrically) the radius of the minimum

covering circle or sphere.

90
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As observed by Elzinga and Hearn (1972b) the
Euclidean norm (22) problem can be solved by convex program-
ming techniques for a unique global optimum. In simplest
form, the objective is to find the smallest circle which
covers a finite set of points in the plane. Capitalizing
on its structure, an efficient geometrical technique can

also be used to solve this problem.

IV.2 Problem Formulation

On the unit sphere formulation of the problem is
similar, with the exception that the great circle metric
is used, and a spherical constraint is added. Given a
finite number of points on the surface of the sphere, it
is desired to locate a servicing facility on the sphere's
surface so that the maximum distance between this point

and the given points is minimized. That is:

Minimize Z (4.2.1)
Subject to Arccos (aix1+bix2+cix3) =z =l M
2 2 i
X7 + X5 + Xy = 1
where: (ai‘bi‘ci) is a demand point, i =1,...,M

(xl,xz,x3) is a servicing facility location, and
Z is (geometrically) the radius of the minimum
covering spherical cap.
The first constraint represents the distance metric and the

second constraint forces the solution to be on the surface

of the sphere. The second constraint unfortunately creates
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a non-convex programming problem, as will be seen in
Section IV.3.1.

It is easy to implicitly eliminate the last con-
straint by using spherical coordinates and formulate the
problem in spherical space Sz:

Minimize Z (4.2.2)

Subject to Arccos (aisin¢cosA+bisin@sinA+cicos¢)

where (sin¢cos),sin¢sin),cos¢) is the location of the

servicing facility and (ai,b ’Ci) and Z are as before.

i
Recognizing the one to one correspondence between
chord and arc lengths of length < n the problem may also
be formulated as one in Euclidean E3 space by adding the
constraint which forces the solution to be on the sphere.
That is, the objective is to equivalently minimize the maxi-
mum chord length (Euclidean norm) rather than minimize the
maximum arc length (great circle metric). It would be
formulated as:
Minimize Z (4.2.3)

§ 2%
Subject to l(xfai)2+(x2—bi)2+(x3-ci) = < Z

where: (a.,b

i c.) is a demand point, i = 1,...,M

n il

(xl’XZ'x3) is the servicing facility in Euclidean

three space, and
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Z is (geometrically) the radius of a sphere with

center at (xl,xz,x3)

IV.3 Fundamental Properties

IV.3.1 Non-convexity

On the plane, the optimum point for the minimax
problem exists and is unique. This is intuitively obvious
and is shown to be true by Blumenthal and Wahlin (1941),
among others. On the surface of a sphere, however, this
uniqueness cannot be guaranteed for the general case.

As observed in formulation of the problem, presence
of the equality constraint results in a non-convex program-
ming problem. This is most vividly demonstrated by example.
Figure 4.1 depicts the objective function plotted as a
function of colatitude and longitude for the four point
problem using data set D5 of Appendix B. Even with the
small number of points, the surface is full of well-defined
ridges and valleys, as well as local optima. As will be
pointed out, the location of the demand points on the sphere
relative to one another is all-important in determining
how easy it will be to obtain an optimal solution. It is
intuitive that these four points form a global subset and
are not containable in a hemisphere (this can be verified
by techniques due to Blumenthal (1956)). Solution of

problems having demand points which form global subsets

cannot be handled by the algorithms presented in this
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chapter, and hence remain essentially unsolved.

Global subsets can give rise to alternate optima--
which cannot occur on the plane due to the convexity of
the problem in Euclidean space. Perhaps the simplest
example is the case when six demand points are located at
the intersection of three orthogonal great circles. In such
a case there are eight alternate optima, one in each of the
octants of the sphere formed by the intersecting great

circles (see Figure 4.2).

o

* = visible alternate
optima, with four
others on opposite
hemisphere.

Figure 4.2. A special case.

A special case also arises when the set of demand
points includes two antipodal points and the set is not
global. In such a case there are an infinite number of
alternative optima. They consist of points on the great
circle which forms the equator when the antipodal points
are the poles. The minimax distance is, of course,

(e




Optimal
(hidden
from view)
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IV.3.2 Comparison with E” Minimax Problem

The n-dimensional minimum covering sphere problem

has been investigated by Elzinga and Hearn (1972b). At
first glance, it might appear that a solution of the problem
in E3 can be modified to solve the problem on the sphere
using the formulation of (4.2.3). This is so when all
demand points are located within a hemisphere, as will be
seen, but it cannot be used when the demand points form a
global subset. For example, consider again the six points
located on the unit sphere S at the intersection of three
orthogonal great circles. The minimum covering sphere
(MCS) is the sphere S itself. However, the covering sphere
determined by an optimal solution to the minimax problem on

the sphere's surface is much larger (see Figure 4.3).

= MCS .~ MCS
for sphere
. problem

Figure 4.3. Minimum covering sphere for sphere
problem.

It is clear that for the problem on the sphere's

surface, there is an upper bound for the solution, whereas
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there is none on the plane. This bound occurs only when

all points on the sphere are demand points. Then any point

on the sphere is optimal, and the minimax distance is .

In the problem being considered there are a finite number

of destinations so the upper bound will never be reached.
1 Although on the plane two points determine a unique
circle for which they are ends of a diameter, on a sphere's
surface the points can determine a great circle, a disk, and
a spherical circle whose radius is greater than 7/2. As
will be seen, when working with global subsets these lat-

ter circles are the ones of interest.

: IV.4 Difficulties with Global Subsets

¥ If the demand points cannot be contained in a
hemisphere, then certainly the minimax distance is greater
than 7/2, and thus the covering circle is a non-convex
region of radius greater than m/2. Many difficulties are

encountered in attempting to solve such a problem, some of

a2

which have already been described.

As mentioned in Chapter II, a solution was offered
for the sphere problem by Sylvester (1860), and recognized
more recently as such by Blumenthal and Wahlin (1941).

The solution technique was actually for the planar problem,
but was claimed to be analogous for the sphere.

It is claimed here that the technique outlined by
Sylvester will not solve the problem for global subsets.

Sylvester was interested in the problem primarily because

T R T e e e
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he found its solution useful in a paper dealing with the
approximate representation of,/x2+y2 and../x2+y2+z2 by
linear functions of x, y and z. Early in the paper,
variables are restricted to be positive. It appears that
this may have led to the error in concluding that the
planar technique is equally applicable to the sphere. For

example, Sylvester assumes that one can reject all
those points that are contained within the contour formed
by the arcs joining the remaining points, so that the case
of points lying at the angles of a convex polygon remain to
be studied. ch

Sylvester did not consider global subsets and this
is where the approach failed. The first step in the tech-
nique is to find a circle (disk) which contains all the
demand points, and then in following steps progressively
decrease the size of the circle. An analogue model is
offered via imagination of a rubber band which maintains
a circular shape. If ". . . sufficiently stretched over
the surface of the sphere to contain all the given points
(represented by minute pins' heads given upon it), this
band will by its contraction upon the surface of the sphere

imitate the method of solution. . . . C(Clearly,

this procedure will not work for global subsets.

An efficient technique to handle the minimax objec-

tive with global subsets awaits further research. Such a

problem may be of mathematical interest, but it will only
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arise in the single facility case. 1In solving a multifacil-
ity problem there is no need to consider any partition of
demand points which forms a global subset. Clearly, when
the number of servicing facilities is greater than or equal
to two, the maximum distance between any demand point and
its servicing facility in an optimum solution is bounded
by n/2 merely by placing the servicing facilities at
opposite poles.

Although the algorithms presented in this chapter
deal only with problems for which the demand points can be
contained in a hemisphere, it is instructive to observe the
properties of the single facility problem with demand points
forming global subsets before continuing.

Once it is known that the demand points are not
containable in a hemisphere, then it is obvious that the
minimax distance is greater than n/2. Using the observation
that the upper bound on distances on the sphere is m, it is
possible to convert the problem to an equivalent '"maximin"
problem.

Consider the objective of finding the point Xb which
maximizes the minimum distance from any demand point. Sup-
pose the optimal distance is b. Consider X', the point
antipodal to Xb' The distance to any demand point Pi from
Xé is then equal to n-o(Xb,Pi). Now certainly some Pk is
on the boundary of the disk D of radius b centered at

Xb. If not, D could be made larger--a contradiction. So
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for this Pk’ p(Xb,Pk) = b, the maximin distance. Now,

p(XyP) = b = Max Min (0 (Y,P;))

Y Al

Malein(n-p(X,Pi))], X antipodal to Y
X i

il

Max|[n-Min(p (X,P.)) ]
X i 2

Max|n+Max (0 (X,P.)) ]
X i

l

T + Max[Maxp(X,Pi)J
X 1

Il

m ~ Min Max(p(X,P.))
. i
X 1.

So if b, the maximin distance is found, one has the
minimax distance, with optimal XB being antipodal to Xb.

It is this equivalence which illuminates the
difficulty of the problem. The maximin problem, also known
in the literature as the ''moxious facility" problem remains
essentially unsolved.

The problem is of a combinatorial nature requiring
consideration of the different disks (less than m in diameter)
that can be formed using the demand points. The objective
is to find the largest such disk which does not contain
any demand points in its interior.

As an example of the foregoing, consider Figure 4.4,
which depicts two problems for a degenerate case (on a
great circle arc). In Figure 4.4(a) the solution is obvious
and can readily be obtained by the algorithm outlined in

Sylvester's paper. In Figure 4.4(b), though, there is no
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disk which will cover all the demand points, and Sylvester's
aporoach will fail. 1In order to solve it intuitively, it
is probably easiest to follow the above procedure. That
is, find the largest circle (arc) which contains no demand
points. The center of the circle (midpoint of the arc),
X*, is optimum for the maximin problem. The point antipodal

to X*, X*', is optimum for the minimax problem.

%
X* X

X*'
(a) (b)

Figure 4.4. Global subsets.

IV.5 Solving the Problem on a Hemisphere

IV.5.1 Introduction

Recognizing that the algorithm of Peirce presented
by Sylvester (1860) will solve the problem when all points
are containable within a hemisphere, the question naturally
arises as to the value of any other approaches. Peirce's
approach is designed for solving the problem by hand and
is not amenable to programming on a computer. Certainly
if the only concern is single facility problems, though,

this procedure is quite satisfactory. However, as pointed
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by Hearn (1971), high speed methods would be desirable for
the single facility problem when solving multifacility
problems. Due to the combinatorial nature of the multifacil-
ity problem (see Section IV.6), any solution procedure is
likely to involve decomposition into single facility prob-
lems, and usually the resulting number of such problems is

quite large.

IV.5.2 The Euclidean Norm Technique

Although new results and approaches to the Euclidean
norm problem are continually being developed, currently
the most efficient algorithm for solving the planar problem
is a geometrical approach due to Elzinga and Hearn (1Y72a).
The algorithm begins with a circle formed by any two points
and proceeds to monotonically increase the size of the circle
until all points are contained within it. Since there are
only a finite number ot two and three point circles, it is
a finite algorithm.

Elzinga and Hearn (1972b) also provide a solution
procedure for the problem in EY. It involves transforming
the Wolfe dual of the convex programming formulation into
a quadratic programming problem. A finite decomposition
algorithm based on the Simplex method of quadratic program-
ming is developed.

Encouraged by the fact that Elzinga and Hearn's

geometric approach is currently the most efficient method

; . 2 . g
for solving the problem in E“, use of projective geometry
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was made to capitalize on the technique in order to solve
the probleﬁ on the sphere. The only additional time
required to solve such a problem on the sphere is that due
to the transformation to the plane and back to the sphere.

As an alternate approach, it is shown that the solu-
tion to the problem in E3 can be used, via a projection
(normalization), to obtain the optimum for the spherical
problem. In practice, however, the first approach would
be preferred since the planar algorithm has been coded
and is more efficient (Elzinga and Hearn 1972b). It must
be kept in mind, though, that both approaches require that

all demand points be containable in a hemisphere.

IV.5.3 The Stereographic Projection

. can be effectively

The geometric algorithm for E
utilized to solve the sphere problem through use of a stere-
ographic projection. This projection, most likely discovered
by Hipparchus (circa 160-125 B.C.), was discarded for
centuries when the world was decreed flat.

Kreysig (1968) credits Lagrange with first estab-
lishing that the stereographic projection is the unique
mapping which preserves circles from the sphere to the
plane. It is this property upon which one can capitalize,
recognizing the geometric basis of the Elzinga-Hearn algorithm.

Cotter (1966) (cf. Hilbert 1952) provides a simple

proof of orthomorphism. Referring to Figure 4.5 he estab-

lished the similarity of AXab and AXAB. He then observed
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that for similar triangles, cones of rotation are similar
and the projection of a circle on the sphere of diameter

AB is a circle of diameter ab.

X

Figure 4.5. Stereographic projection.

Through the projection, the correspondence is one to

one onto. That is, to each circle C on the plane, there cor-

responds a unique small circle C' of spherical diameter less

than m on the sphere.

Now, if all demand points are contained in a hemi-
sphere, and the projection point is in the opposite
hemisphere, it follows via the projection that if a point
X is contained in a circle C on the plane, its correspond-
ing inverse image point X' on the sphere is contained in
the inverse image small circle C' on the sphere. Note
that this is NOT true if all points cannot be contained
in a hemisphere or if the projection point is not in a
hemisphere which doesn't contain the demand points. A
suitable projection point would simply be a point antipodal

to any demand point.

——
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IV.5.4 Stereographic Projection/E2 Technique

Using the above properties and observation to best
advantage, a parallel problem can be constructed in E2 via
the stereographic projection. This single facility unweighted
minimax problem can then be solved in the plane using the
etficient Elzinga-Hearn algorithm. In Ez, the optimum
circle Cg is unique (Rademacher and Toeplitz 1957). Via
the projection,Cg has a unique inverse image small circle
on the sphere.

Requiring all demand points to be within a hemisphere,
and appropriately choosing the projection point in the oppo-
site hemisphere, note that the spherical small circle Cg con-
tains all the demand points whenever Cg contains all the
images of the demand points. Certainly no smaller spherical
circle contains all the demand points. Cg, then, is the
minimum covering circle on the sphere. Its center is opti-
mum for the spherical minimax problem since at this point
the maximum distance to some Pi’ i=1,...,M, is obtained,
and this distance can be no smaller.

Once again, it is important to note the necessity
that all points be contained in a hemisphere, otherwise
the inverse transformation's small circle corresponding
to the optimum circle in the plane will not contain all
demand points. In fact, it would not contain any demand
points. For similar reasons, the pole for projection must

be exterior to the spherically convex hull containing all
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demand points. That is, the pole must be in a hemisphere

which contains no demand points.

IV.5.5 Normalizat:ion/E3 Technique

In the following it is established that a solution
technique for the equally weighted single facility Euclidean
norm minimax problem in E3 can be advantageously used to
solve the same problem on the unit sphere S if all demand
points Pi are on an open hemisphere of S and great circle
distances apply.

It is obvious that if any two points are antipodal,
or if the Pi cannot be contained in a hemisphere, the mini-
mum covering sphere (MCS) will be the unit sphere S, and
the optimum point would be the center of S. Such a situ-
ation precludes solution by the technique which follows.

As will be seen, a crucial part of the procedure is to pro-

ject from the center of S through the center of the MCS, X*

to get a unique point on the surface of S (normalization

of X*). This certainly cannot be done if the center of

S and the MCS coincide. A rudimentary method of determining
whether all points are in a hemisphere was given in

Section III.4.3.

Prior to establishing the theorem it is useful to
observe that on a hemisphere, the correspondence between
the small great circle arc and the chord determined by
two distinct points via the projection of points of the

chord onto the arc from the sphere center is one to one onto.
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Referring to Figure 4.6, on an o pen hemisphere
it is easily seen that as X increases monotonically so does
A; the same relationship holds between x and a. It also

follows that a = R Arcsin(x/R).

X

[TE=

Figure 4.6. Arc and chord relationship.

Theorem 4.1 Given M equally weighted demand points Pi on
an open hemisphere of S, suppose the Minimum Covering Sphere
in E3 is obtained. Let X: be the unique projection from
the center of the sphere S to the surface through X*, the
center of the MCS. Considering the points Pi’ X: is the
optimum for the minimax distance problem for the great

circle metric on the surface of S.

Proof: Certainly one of the demand points will be on the
boundary of the g MCS. Otherwise the MCS could be made
smaller, a contradiction. Suppose Pj is such a point
(see Figure 4.7). Let lxg - Pj|£2 be the optimum minimax
distance in E3, where Xg is the center of the minimum
covering sphere. Consider the chord from Pj through Xg

of length leg - Pj = X. Corresponding to this chord

I,l2
is a unique small great circle arc of measure A. Letting
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Xg be the projection of Xg to the surface of the sphere it
is seen that p(Xg,Pj) = %A,

The proof that Xg is optimum for the great circle
metric on S is by corntradiction. Let X; be a point on S
distinct from Xg such that its maximum distance from any
other point is p(Xé,Pk), where Pk is one of the M demand
points. Further, suppose that p(Xé,Pk) < D(Xé,Pj).

Now, as observed, corresponding to o(Xé,Pk) is
length IXé - Pklz? via the inverse correspondence. It
follows that IXS 5 Pklg? is the maximum length from Xé to
any of the points Pi' ?or, if not, there exists Pl such
Pily, > 1% - Bely .
Arcsin function this implies that O(Xé,Pf > D(X;.Pk).

that lXé - Due to properties of the

This cannot be, since by assumption P, is further from X;.

Optimum covering sphere
with center on S

Figure 4.7. Normalization/E3 technique.

In the same manner, the assumption that “(Xé’Pk) <
*
i i b * -
O(Xé,Pj) implies that [X] Pkllz SRS PJIQZ.
This results in a conclusion that IXé - Pklg is a

maximum distance strictly less than the minimax distance,

a contradiction.
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IV.6 Application to Multifacility Problem

IV.6.1 Introduction

As mentioned earlier, the primary incentive for
developing an efficient algorithm for the single facility
problem is its possible usefulness in solving a multifacil-
ity problem. In this section a particular type of multi-
facility problem is considered in which there is no interac-
tion between facilities to be located, and all demand point
weights are equal. The problem in E2 was briefly discussed
by Hearn (1971) and also studied by Loginov (1969) for the
E" case. The mathematical formulation is:

Minimize Vv

subject to max {Z,.,*|X.-P.|], } <V i=1,...,M
TR R j=L.....N
siin
N
B g 2k j=1,...,N
j=l_ Jl
1 if facility X. interacts with
s = { demand point P,
J 0 otherwise
where: Xj is the location of a servicing facility, j =1, ..
Pi is a demand point location, i =1,...,M

V 1is (geometrically) the radius of a disk centered
at an Xj' and

M and N are the number of demand points and servic-
ing facilities, respectively.

The problem can be stated as: Given a finite set

A of points in Euclidean n-space, and an integer N,
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determine N n-dimensional spheres such that each point of
A is contained in at least one of the spheres and the
maximum sphere has minimum diameter. It can be considered
as a minimax counterpart to the multifacility minisum
location-allocation problem of Section III.1l4.

Loginov's solution procedure will solve the problem

for small N and M in E3. Hearn (1971) presents an implicit

enumeration technique which will solve the problem in
Ez. Neither technique is very efficient, but at least a
procedure is available.

The multifacility minimax problem presents the same
difficulties encountered in the multifacility minisum prob-
lem. Due to its combinatorial nature, current solution pro-
cedures cannot handle more than 3 or 4 servicing facilities
and 20 or more demand points. ‘The number of partitions for
any given M and N is S(M,N), the Stirling number of the
second kind. In the particular case of N=2, S(M,2) =

2M—l

-1, which quickly increases for moderate size M.
The intent of this section is to show that Loginov's
procedure for E3. or any more efficient technique that may

be developed in the future, can be used to solve the

counterpart problem on the sphere.

IV.6.2 Problem Formulation

For the problem on the sphere, the formulation is

quite similar, except that great circle arcs are used, and

the servicing facilities are restricted to the surface of
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the unit sphere:

Minimize v

Subject to Max{o(Xj,Pi).Zji} st } : {: .:g
N
I Z.i > 1 2 (N ) (U |
s
X. = 1l Ja= N
l J|22 j
Zjis{O,l} \d b

Recognizing that as long as all demand points are
contained within a hemisphere, it follows that the maximum
great circle arc length corresponds to the length of the
maximum chord, which is < 2 for the unit sphere. Thus, an
equivalent formulation is to:

Minimize v

Subject to Max{|X.-P.|, ¢Z..} < v i = M
oyt j=1,....N
N
Lofie > 1 L=y M
5 Sl
IleQ =1 j o= 1, N
Zjic{O,l} \/ i,4

IV.6.3 A Solution Technique

It will now be shown that any procedure which

solves the problem in E3

can be used to find an optimum
solution for the spherical problem.

Suppose N > 2. As mentioned earlier, the optimum




F " — e ————

112

minimax distance is bounded above by n/2. In fact, a mini-
max distance of 7/2 would occur only in a pathological
case where there are an infinite number of demand facil-
ities (a great circle arc, for example). In this instance
there are, likewise, an infinite number of alternate

} optima. For example, any two antipodal points located
on the great circle will be optimum points.

For practical purposes, then, it can be assumed
that the minimax distance is strictly less than /2. This
is the case when there are a discrete number, M, of demand
points and N > 2.

Suppose all points Pi’ i=1,...,Mare located on a
sphere S. S is embedded in E3. Capitalizing on this fact,
consider the problem as unconstrained and employing an
existing algorithm for the counterpart multifacility minimax
problem in E3.

Solving the problem in E3, the solution consists of
N spheres, the centers of which are servicing facilities
optimally located so that the maximum distance to any demand
point Pi is minimized and all Pi are serviced by at least one
facility. The union of the N spheres, then, contains all the
demand points. It is obvious that the solution need not be
unique, i.e., sometimes it is possible to find alternate
systems of N spheres covering all demand points such that
the diameter of the maximum sphere is the same. In any

case, of course, the minimax distance is unique.

“— e "
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Given an optimal set of N spheres, project the
centers of these spheres to the surface of S. Since no
point is greater than distance 2 (diameter of the unit
sphere) from any other point, the N spheres are each
certainly no larger than S. Likewise, as mentioned pre-
viously, the maximum great circle distance from a projected
point to any demand point contained within the respective
sphere is less than 7/2.

Through a similar argument as in the single facil-
ity minimax problem for points on a hemisphere it is seen
that monotonicity is preserved in the projection. That
is, the largest sphere generates the largest great circle
distance. So, using the projected points as the N minimax
locations on the sphere, the largest great circle distance
is found by projecting from the center of the largest sphere.

This great circle distance is the smallest possible.
For, if there were a smaller one, through the inverse
transformation there would exist a sphere with diameter

less than the minimax diameter, a contradiction.




CHAPTER V

COMPUTATIONAL RESULTS AND CONCLUSIONS

V.1 Introduction

This chapter accomplishes three objectives. It
provides a fundamental comparison of the two algorithms in
Chapter III with regard to their ability to reach a global
optimum (robustness), provides insight to the properties of
the single facility minisum problem on the spherical sur-
face, and provides evidence of the error which arises due
to the use of a Euclidean assumption when solving large
region problems.

A number of test problems have been solved by each
algorithm, varying the level of difficulty. Two
example '"large region' problems from the literature have
also been solved. In each problem, verification of global
and local optima was made by use of three dimensional
plotting and an exhaustive grid search.

Comparisons are made between solutions found via a
Euclidean assumption and those found using a great circle
metric. The Hyperboloid Approximation Procedure (HAP)
(Eyster, et al. 1973) is used to solve the problems for

the Euclidean assumption. It is seen that even in the
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cases where the optimum location is not very different,
the difference in objective function values can be signif-
icant. Other conclusions are also drawn based upon compu-
tational experience.

The two single facility algorithms of Chapter III
were coded in Fortran IV, and all problems were solved on
the IBM 370/158J system using double precision arithmetic.
No attempt was made to determine sensitivity of parameter
selection. For example, judicious selection of the step
sizes could significantly affect the ability of the Cyclic
Meridian Search (CMS) algorithm to reach global optima, but
confirmation is a subject for future research. Also,
neither algorithm was coded with the intent of achieving
high efticiency. The primary goal was to reach a global
optimum. For more efficient codes it is necessary to
incorporate acceleration procedures.

The parameters provided in Table 5.1 were used
for solving the example problems in Appendix B under the
great circle metric. Refer to Chapter III for descriptions

and definitions of each parameter.
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lanar Projection Cyclic Meridian Search
BOUND = 1/6 1 =107} > =2
EP1 = 1076 pINC = 107% ITBOUN = 40
P2 = 107 AMIN = 1070 LRANBO = 4
NI = 50 ¢ - 1077 EPL = 107°
S =1 Ep2 = 107°
N =5

Table 5.1. Parameter values.

V.2 Some Example Problems

The first example is a minisum problem using the
demand points in Data Set D6 of Appendix B. It consists of
13 equally weighted points located on a great circle arc.
It is informative since its simple nature makes it easy to
see the effect that different starting solutions have on
the iterative procedures of both algorithms. Figure 5.1
depicts a graph of the objective function values as a func-
tion of longitude. The latitude is 0° for all demand
points. The demand points are indicated in the figure,
as are the locations of all starting solutions except S5.
Note that a convergent algorithm would be expected to
achieve the global optimum (0,20) for any starting solution
between -60° and 56° longitude. Both algorithms behave
properly, with a surprising result arising from use of CMS.
Using starting solution S2, one would expect to get stuck

at a local minimum, yet due to the internal features of
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the algorithm (discussed in Chapter III) the search escapes
the local minimum's region of attractiveness, jumps across
another one, and stops at the global optimum. This feature
seems to occur rather frequently.

Also, note that when starting solution S5 is used,
the Planar Projection Algorithm (PPA) reaches the global
optimum while CMS stops at a local optimum. Curiously, in
all example problems attempted this was the only instance
in which PPA achieved a global optimum when CMS did not.

It is enough, however, to encourage one to use each algorithm
as a check on the other.

In Table 5.2 the results of trying a number of dif-
ferent starting solutions on Data Set D6 are listed. Note
that in this problem a projected centroid starting solution

(S4) results in a local minimum, regardless of the technique

used.
PPA CMS

Starting i Stops |[Obj Fn| Type # |Stops [Obj Fn| Type

Point ||Iter at Value| Soln ||Iter at Value| Soln
51(0,20) 1 ]1(0,20) 17 .52 Globall 1 [((0,20){17.52|Global
S2
(0,-155) 3 1(0,-124)) 22.69|Local 2 1(0,20)]17.52|Global
S3 (0,0) 2 ](0,20) 17.52|Global 1 |(0,20)|17.52|Global
S4 (0,
62.21)
(Proj . 2 1(0,70) 17.91 |Local 1 {(0,70){17.91 |Local
Cent.)
S5 J
Hgo’go) “ 9 (0,70) 1/.5[ GlObal 6 (0,70) 17.91 LOCal

Table 5.2. Results for Data Set D6.
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Now consider a three equally weighted demand point
problem using Data Set D1 of Appendix B. This problem
tests the ability of the algorithms to find a global optimum
over a definitely non-convex surface. A three dimensional
function plot of the problem is found in Figure 3.1. The
global optimum is at P3, (30,-60).

The algorithms stopped at the same point, as can
be seen in Table 5.3, for all but one of the starting solu-
tions. An interesting observation is that when one starts
at the antipodal point to the global optimum, P3', both
searches still end up at the global optimum. Concerning
the number of iterations, in general CMS is more efficient.
Although not concerned with efficiency in terms of execu-
tion times in this research, it is interesting to note
that CMS takes, on the average, about half the time as PPA.
There are situations, though, when CMS is slower than the
other approach, particularly when the search begins on or
near a ridge.

The next set of examples consists of ten small
problems for which a projected centroid was used as a
starting solution. As can be seen in Table 5.4, both
algorithms successfully found the global optimum in all but
one case.

This group of problems gave rise to a number of
interesting observations. For example, Data Set D12 was

handled more efficiently by PPA. Data Set D9, on the
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oacal ¢ [ type oo ] weor | 209 fopramm | 22
Set |[Pts| Soln Centroid Value Soln ez ¥ cics
PPA | CMS

D3 7 {Global 3 4 (25.2,27.6)1 6.46 | (25.8,21) } 6.15

D7 3 {Global 3 2 (32.3,0) 2.8 (54.9,0) 2.59

D8 3 |Global 3 2 32.3,-60) ] 2.8 (54.9,~-60) 2.59 |
D9 3 |Global| 6 1 (63.6,75) 3.64 | (80.6,75) | 2.08 '
D10 | 3 |Local 7 3 (0,90) 4.11 | (-5.3,90) | 4.11

D11 | 3 |Global 3 5 (27.4,71.53) 2.78 | (50,80) 2.6

D12 4 | Global 2 7 (70.8,37.8)| L.44 | (80,45) 1.3

D13 | 4 )Global 6 4 (49.3,110) | 4.41 | (44.8,50.3)4.23

D14 | 4 |Global 5 3 (45.9.88.3) 3.79 | (52.1,100% 3.76

D15 6 |Global 1 1 (0,0) 9.42 | (.97,0) 9 .42

Table 5.4. Results for ten problems.

other hand was dispensed with in one iteration by CMS. This
is because in the first iteration the search occurred along
the meridian upon which the optimum solution exists.

In the large majority of cases, the first iteration

makes a major move toward the global (or local) optimum, and

the remaining iterations involve small steps which continu-
ally, but slowly, improve the objective function value until
a stopping criterion is satisfied. 1In order to illustrate
this property of the algorithmic search pattern, consider

Data Set D7 as solved by PPA:
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Location Objective Function
Value
Starting Solution: (32.:2.00 2.797699
Iteration 1: (53.97,0) 2.59099
Iteration 2: (54.84,0) 2.590403 |
Iteration 3: (54.86,0) 2.590402 i

Certain observations about some of the ten Data
Sets are of interest in light of comments and results in

Chapter IIL.

1. Data Sets D3 and D12 are containable in a disk
of diameter n/2, and can be considered via Conjecture 3.7.1.

2. Data Set D14 illustrates Fagnano's Result
extended to the sphere.

3. Data Sets D7 through D11 demonstrate aspects
of Steiner's Problem on the sphere. It can be easily
verified that the optimum solution is at a point which
forms angles of at least 120° with the three vertices of
the spherical triangles formed by the demand points. The
global optimum for Data Set D1l occurs at a vertex, which
has an angle greater than 120°. There are two alternate
global optima for Data Set D10, but neither algorithm
reached one by using the projected centroid as a starting
solution. The alternate optima occur at the vertices
(-30,20) and (-30,160). The local optimum, at which
iterations stopped, is the interior point of the spherical
triangle which forms angles of precisely 120° with lines

drawn to the three vertices.
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4. Data Set D15 has a constant objective function
value. Every point on the sphere is optimal.

Now consider a problem using Data Set D16 of
Appendix B. This six unequally weighted demand point
problem was solved by both algorithms using a variety of
starting solutions consisting of the optimum found via a
Euclidean assumption, the projected centroid, all demand
points, the antipodal point to the projected centroid and
antipodal points to all demand points. By referring to
Figure 5.2, one can see intuitively the expected ''goodness"
or "badness'" of the respective starting solutions relative
to the location of the global optimum.

The computational results are exhibited in Table
5.5. For the various starting solutions used, CMS per-
forms better overall than PPA in reaching the global optimum.
Also, in execution time CMS achieved the solution twice as
fast, on the average, as PPA.

Of particular interest are the results when starting
solutions S6 and S8 are used. Although they are local
minima, CMS successfully escapes their grasp and reaches
the global optimum.

Note that in this problem the projected centroid is
a good starting solution, and is not too far from the optimal
solution. In fact, it is significantly better than what
would have been achieved if the problem had for some reason

been solved with a Euclidean assumption. Table 5.6
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presents the results for the projected centroid, the optimum
for the sphere, and the optimum found by using a Cartesian

coordinate system in EZ.

Objective Function

Location Value

(Latitude,

Longitude) Great Circle Euclidean
A (25,-115) 20.57 55, 4B
A (9.44,21.02) 22.195 25 214
for E
523%‘3823" (42.4,-91) 20.90 35.434

Table 5.6. Sphere vs. plane, Data Set DI16.

Using the Euclidean assumption for this particular
problem will result in an objective function value error of

about 187 and a location error of over 10,000 miles!

The next example required the algorithms to solve
a problem in the polar regions. Data Set D17 of Appendix B
includes the coordinates, in latitude and longitude to the
nearest degree, of nine experimental stations and other
sites in Antarctica. Using the minisum criterion and
assuming equal weights, an optimal solution was found by
both algorithms. The projected centroid was used as a
starting solution. PPA used three iterations while CMS
used four iterations to reach the optimum at (-87.79,89.78).

With the foregoing observations in hand, two problems

S anpde . .
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from the literature were examined. Both involved solution
of a single facility minisum problem by using a Euclidean
assumption and letting latitude and longitude represent the
Cartesian coordinates.

First, consider an example problem used by Kuhn and
Kuenne (1962). The data (Data Set D18 of Appendix B) con-
sists of 24 cities of the Ukrainian Soviet Socialist
Republic. The weights are equal to the proportion each had
of the population of the 100 largest Russian cities (as
of 1961). The coordinates are degrees of north latitude
and east longitude correct to the nearest full degree. The
latitude of Kharkov is in error by about nine degrees,
but since Kuhn and Kuenne evidently used the published
coordinates to solve the problem, they were also used for
this example.

Before examining the results, it is important to

point out that the points could easily be fit into an 800

by 1000 mile rectangle, and certainly into a disk of diameter

less than mR/2, where R is the radius of the earth. By
Conjecture 3.7.1, one can guarantee a global optimum. Both
algorithms achieved the global optimum using the projected
centroid as a starting solution.

In this particular problem there is no significant
effect on location of the optimal solution relative to
using either the great circle metric or Euclidean norm.

there is a definite effect on the value of the

However,
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objective function (see Table 5.7). This would be of sig-
nificant interest in the area of logistics, and especially
budgeting, in any attempts to estimate transportation

requirements/costs.

Objective Function

Location Value

(Latitude,

Longitude) Great Circle Euclidean
s Sohere | (47.795,35.2402) | .01293768 .01669464
Op t imum E2
(HAP) (47.707,35.104) .01295154 .01663096

’ 2

et e armet] 147 6,35 32) 101296313 .0166528

Table 5.7. Sphere vs. plane, Data Set DI18.

It is easy to verify that the error in optimal
location is about 9.26 miles, while the objective function
value error is off by about 22%.

The last example is due to Chapelle (1969). He
considered the 49 continental states plus the District of
Columbia and their corresponding output in first class
letter mail in the year 1965. The output volume in pounds
was assumed to originate from the capital of each state.
Latitude, longitude and weight for each point location are
found in Data Set D19 of Appendix B. Chapelle's objective

was to optimally locate a central facility for the postal

system, assuming plane geometry.
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Although the region is larger than in the previous
example, it still can be contained in a disk of diameter
less than mR/2. Both algorithms of Chapter III reached
the global solution, using the projected centroid as a
starting solution, taking seven iterations of CMS and three
iterations of PPA to meet stopping criteria. It took 65%
less time to solve the problem by CMS.

Referring to Table 5.8, one can compare the results
obtained by either a Euclidean norm or great circle metric
approach. The error in location is only 30 miles, yet

the error in objective function value is over 207%.

Objective Function

Location Value

(Latitude,

Longitude) Great Circle Euclidean
Op t imum
for Sphere (40,83) 780,065 987,413
Op timum
for Plane £39.65,-83.45) 781,635 986,878

Table 5.8. Sphere vs. plane, Data Set D19.

V.3. Conclusions

Based upon the experience obtained in solving a
number of single facility minisum problems using both
algorithms, the following conclusions can be drawn:

1. Comparing the two algorithms in their rudi-
mentary form, the Cyclic Meridian Search (CMS) algorithm

is, in general, faster than the Planar Projection
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Algorithm (PPA). There is always the possibility of
getting stuck on a ridge and zigzagging, but the integral
use of random search directions helps avoid these diffi-
culties.

2. PPA is not as likely to reach the global opti-
mum as CMS. Other than the observation that CMS can "'jump
out' of local minima regions and accelerate in a search
direction, there is no apparent a priori reason for its
success.

3. No case of divergence was observed for either
algorithm in any problem attempted. In all cases at least
a local minimum was obtained.

4. The projected centroid is a good starting solu-
tion, but will not necessarily result in finding the global
optimum.

5. A Euclidean assumption for even moderately
large regions (800 by 1000 miles) can lead to significant
error in objective function values. This is because a
planar assumption overestimates actual distance. Also,

significant error in location of the optimal facility can

occur in problems covering regions as large as a hemisphere.
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CHAPTER VI

SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

VI.1 Introduction

In this chapter a summary of research performed on
the single facility location problem for large regions is
presented. Recommendations for future research are included
to assist in identifying topics which would extend the cur-

rent research effort.

VI.2 Summary

This research presents an extension of the gen-
eralized Weber problem and of the related problem of mini-
mization of maximum distance. The primary objectives were
to investigate the effect of a great circle metric on the
problems of interest, and to develop solution procedures
to solve them. The results will permit greater realism
and accuracy in solving large region location problems
for which a Euclidean (planar) assumption is inappropriate.

In Chapter I the necessity of considering location
problems under a great circle metric is discussed, along
with possible applications of the research. Chapter I1
then presents a literature survey of previous research

131
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concerning large region location problems.

In Chapter III the single facility generalized
Weber problem is studied, where the goal is to locate a
new facility on the sphere relative to several weighted
demand facilities such that the total cost of transporta-
tion is minimized. Cost is considered to be strictly a
function of great circle distance and demand point weights.

Different formulations and properties of the problem
were discussed, along with two new iterative algorithms
for solving it. Both algorithms were programmed and optimal
solutions were obtained for several problems. Application
of the techniques to solving a multifacility location-
allocation problem is also discussed.

In Chapter IV the objective of locating a facility
to minimize the maximum distance to any demand point under
a great circle metric was considered. It is assumed that
the number of demand facilities is finite and their weights
are all equal. Two approaches to the problem are presented,
both of which capitalize on existing algorithms to solve
the Euclidean norm problem in E2 or E3. Properties of the
problem and application of the single facility techniques
to solution of a certain multifacility minimax problem are
presented.

Chapter V presents results of applying the algorithms
in Chapter III to a number of example problems. Comparative

effectiveness in reaching the global optimum is examined.
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VI.3 Recommended Future Research

A numter of areas for further study are clearly
available. They are:

1. Perform sensitivity analyses for the two
algorithms in Chapter III and compare their relative
efficiency.

2. Due to the nature of the minisum problem, an
efficient global algorithm awaits a breakthrough in non-
convex programming. In the meantime, efforts toward devel-
oping good bounds using a branch and bound technique would
be fruitful.

3. With regard to escaping local optima in the
minisum problem, investigate development of existing tech-
niques to capitalize on the structure of the problem.

4. Develop an efficient technique to solve the
single facility minimax problem with equally weighted
demand points when the demand points form a global subset.
Based on comments in Chapter IV, success in this endeavor
awaits a breakthrough in solution of the 'noxious facility"
location problem.

5. Develop a method to solve the weighted single

facility and multifacility minimax problem in the great circle

metric. Lt does not appear likely that the geometric
approach would be feasible for such problems.
6. Recognizing that in practical applications one

is faced with the fact that land covers only a small part
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of the earth, develop methods which will consider con-
straints as to location of the servicing facility (besides

the one restricting it to the sphere's surface).
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APPENDIX A

CONVEXITY THEORY IN SPHERICAL GEOMETRY

A.1 Preliminary Definitions

In spherical geometry one has the axiomatic frame-
work as set forth by Kay (1969) with the canonical model
being the unit sphere S2 in Euclidean 3-space given by leQ =
1. In this model, the spherical metric p(x,y) for each
x and y in s? is the length of the minor arc of the great
circle joining x and y, and «, the least upper bound for
the metric, has the value w. Further, the lines of the
geometry are great circles, and if two points x and y are
not antipodal [p(x,y) # 7] the line through x and y is
unique; in this case the line is denoted §§. Each line can
be coordinatized from the set of numbers {A|-m < X = 7}

(the coordinate set), with any point as origin (zero coordi-

nate) and such that if the coordinates of u and v are A and
u, then p(u,v) = [A-u| if |[A-u| < 7, or p(u,v) = 2m -
[A-ul it |A-u| > n. Betweenness can be defined by
asserting that z is between x and y, if and only if x, y,
and z are distinct points and p(x,2) + p(z,y) = p(x,vy).

If z is between x and y we denote the relationship by (xzy).
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For any two points x and y such that 0 < p(x,y) < 7
the segment joining x and y, denoted Xy, is the set of

points {z|z=x, z=y, or (xzy)!.

Definition A.1 A set C in 52 is said to be convex if

for each two points x and y in C such that 0 < p(x,y) < =

then the segment Xy € C. The convex hull of a set A in g<

is the intersection of all convex sets containing A,

denoted conv A.

It is obvious that an arbitrary intersection of
convex sets is convex; hence conv A is a convex set for each
subset A of Sz. A set is convex iff it equals its own convex
hull. Note that the above definition of convexity allows
the following examples to be convex sets: A hemisphere, a
great circle, a lune, and any pair of antipodal points.

The convex hull of 2 points is either a segment or the
two points themselves; the convex hull of a closed hemisphere
and a point not on it is the entire sphere Sz.

One of the important axioms concerning betweenness

on 82 is the so-called plane separation property: Each

line L in 82 divides the points of 82 into three pairwise
disjoint convex sets L, Hl’ and H2 such that if x&Hl and
yrH2 there exists a point zeL such that (xzy). The sets

Hy, H2 are referred to as the half-spaces determined by L,

and two points which lie in the same half-space determined

by L are said to lie on the same side of L. Note in
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passing that a half-space is a hemisphere on 52 with its
boundary (great circle) deleted.

A half-line or ray is in a subset L' of a line L of
the form {u[A]}A>0} where ulA] denotes a coordinate system
for L; a half-line always consists of a (closed) semi-
great circle. The point ul0] = x is called the origin of
the ray, and if v is a point on L' such that 0 < p(x,y) < 7w,
the ray is denoted E?. It is shown by Kay (1969) that if
za§§ with 0 < p(x,z) < m, then §§ = %2.

An angle is the union of two rays having the same
origin, the two rays being called its sides and the common
origin its vertex. ILf §§ and X2 are the sides of an angle
the notation ¥yxz is used. The measure ¥yxz of the angle
i??E is the Euclidean measure of the angle formed by the
tangents to the sides’i? and X2 at x in 3-space. Note
that a straight angle (having measure 7) is a line on Sz,
and that every other angle is the boundary of a region
on 82 usually called a lune or spherical section.

Given three distinct rays §3,'§3, W having the
same origin x, we say that X¢ lies between Xu and‘?%, and
we write (XU x~ ), if guxv +Jvxw = Juxw. The interior
of an angle XyXz is the set of all points lying on rays
which lie between the sides ?? and X2. (See Kay (1969)
for betweenness properties of segments, rays, and triangles.)
2

If x, v, z are 3 distinct noncollinear points of §

it follows that 0 < p(x,y) < mn, 0 < p(x,z) < 7, and
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0 < p(y,z) < 7. Thus, the segments Xy, yz, zx exist, their
union defining a set called a triangle, denoted Axyz. If
for each point x and line L not through it H(x,L) denotes
the half-plane determined by L and containing x, the
interior of triangle xyz is by definition the set H(x,§Z)N
H(y,ﬁ?)ﬂH(z,??). It can be shown that p is an interior
point of triangle xyz iff the line ¥p intersects yz at a
point w such that (xpw) and (ywz). and similarly with lines
?3 and'fsﬂ The Crossbar Principle (Kay 1969) then shows
that (Xy % %3).

Finally, a circle on 82 is the set of all points at
a fixed distance (radius) from a fixed point (center).
Note that a circle with radius 7/2 is also a line on Sz;
the center of any other circle may be chosen in such a
manner that the radius is less than n/2. The interior of
a circle of radius r is the set of all points at a distance
less than r from the center. A disk on 82 is a circle of
radius< /2 and its interior; the center of the disk is
the center of the circle defining it. (Circles and their
interiors are not convex sets if their radii are greater

than n/2.)

A.2 Some Topology on 52

Given any set A on 82 a point x is called an
interior point of A if x is the center of some disk which
is entirely contained by A. A point x is called an

exterior point of A if x is the center of some disk which
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is entirely devoid of points of A. A point which is neither
an interior or exterior point of A is called a boundary

point. We denote by int A, ext A, and bd A, respectively,

the set of all interior points of A, the set of all exterior
points of A, and the set of all boundary points of A,

called the interior, exterior, and boundary of A. A set K

is closed if bd K€ K (K contains its boundary points).

A set is open if int KD K (every point of K is an interior

point of K). It easily follows that for any set K in Sz,

int K = K\N\bd K= the set of all points of K which do not
belong to bd K.

A set K in any metric space is called compact

if for each sequence of points {Xn} in K some subsequence

{xn } converges in the metric to a point x in K (that is,
k

lim p(x,xn ) = 0). Since S2 is itself a compact subset of

k+o k

a metric space it follows that any closed subset K of 82 is

compact. To see this, assume {xn}C: K and that lim p(x,xn )
ko k
= 0 for some xeS2 and some subsequence {xn ' ot {xn}.
k
Then if x¢K certainly x is a boundary point of K: every disk

with X as center contains points in K (namely, the points
xnk for large enough k such that o(x,xnk) < radius of the
disk), and a point not in K (namely, x itself). Since K

is closed, bd K€ K or x ¢ K, a contradiction. Hence, x £ K
and {xnk} converges to a point in K proving that K is
compact.

A well-known result of topology is that if f is
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any real-valued continuous function defined on a compact
subset K of a metric space, there exist points 31 and k2 in
K such that f(kl) is the absolute minimum of f on K and

f(kz) is the absolute maximum.

Definition A.2 A (topological) separation of a subset A

of a metric space is a pair of disjoint open sets U, V
such that U and V both intersect A and AC UV V. A set
A is connected if it has no such separation. (Thus, A is
connected if and only if for each pair of disjoint open
sets U, V such that AC UU V, then either AC U or AC V.)
Common examples of connected sets in R2 are points,
segments, arcs, continuous curves, graphs of continuous
functions, and convex sets. To see that a segment is con-
nected, let its endpoints be p and q, and let the segment
be parametrized by {A|0<i<length of Pq=E8}, with P,cPq
such that Pgp = P and P = 9. If (U,V) is a separation of
Pq then without loss of generality, one can assume pxlg U,
pAZE V, with }{ < A,. Let AO be the least upper bound of
the set A < A, such that p ¢ U. Then p, 04 V, or else
there exists a disk D centered at P, contained in V; by
definition of AO a sequence {An} > AO exists with pAng U,
and hence lim p, = P, sop, € DCV for all sufficiently
n->wo n 0 n

large n, contradicting the disjointness of U and V. Hence

Py € U. Since AO & Az and Py € V one must have AO # Az,

0 .
and p, ¢ V for Ao < A 2 A,. Let {An} be a sequence con-
verging to AO such that AO < \5 < Az. Then lim p,, = Py
n+e  n 0
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and in the same manner that p, € V was proved one obtains
the contradiction Py € 07 Thgrefore, no separation of Ppq
exists and pq is congected. (The definition of convexity
can now be shown to imply the connectedness of any convex
set.)

The type argument used above to prove the connected-
ness of a line segment in R2 will occur later in a slightly

different context. First an obvious property of connected

sets is established.

Lemma A.1 If A is any connected set in R2 which
contains two points on opposite sides of a lLine L, then L
passes through a point of A.

Proof: The two sides of L form two open sets U and
V such that UUVUL=R2. Hence Ac UV VV L. If
AN L =0¢ then AC UV V, with A meeting both U and V.
Hence (U,V) separates A, denying the connectedness of A.

Recall that if f is any real valued function of a
real variable, the graph of f, denoted graph f, is the
subset of R2 consisting of all points with coordinates
(£,£(8)), where £ is real and varies on the domain of f.
It will be convenient to augment this set in the case of a

discontinuous function.

Definition A.3 Let f be any bounded real-valued function

of a real variable defined on an interval a < & < B,

The augmented graph of f is the set graph f Y T, denoted
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by grapn*f, where T consists of all line segments joining
(v,£(y)) with (Y,Yl) and (Y,Y,), where a < y < B and
¥y = lim supé»yf(i), Yy = lim inf&+Yf(g). (Recall that
lim SUPE*Yf(g) and lim inf£+Yf(E) are respectively the
maximal and minimal values to which sequences f(gn) con-
verge for {&n} converging to y.) Let TY denote the
segment (perhaps degenerate) joining the three collinear

points (y,f(y)), (v,v,) and (y,v,) for each a <y < 6.

Lemma A.2 The augmented graph in R2 (graph*f)
of any bounded real-valued function f of a real variable
is connected.

Proof: Using the same notatio:. as above, for each
(v,8) € graph*f then a < y < B and (y,8) lies on TY' (If
f is continuous at vy, TY = the single point (yv,f(y)).)
Suppose graph*f is not connected. Then graph*f has a
separation (U,V) with U,V disjoint open subsets of RZ,
graph*fC UV V, and graph*f meets both U and V. Since
TY is connected for all y then either Tyc U or TY C Vv
for all a« <y < R Since all points of graph*f lie on
some TY then for certain values Y1 and Yo TYlC: U and
TY9<: V; one can assume that Y1 € Yoo Let Yo be the least

up;er bound of all ¥y such that TYC: U. Then TY & U

< Y
- 0
for otherwise, TY C V, and by definition of Yo there exists
0
a sequence {Yn} converging to y, such that vy < v, and

T € U. Let (v_,8§ ) ¢ T_ ; since {§_} is bounded there
"n S "n 2
exists a subsequence {Gk} of {Anf (writing k in place of nk)
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such that {Gk} converges to some §,. Hence lim infg'}Y f(g)
< 8y < lim SuPi*YO f(¢) and (yo,do) £ TYO But if TYOC: Y
there is a disk D in R’ entered at (Yo,éo) and contained in

V. Since 1i: (Yk,ék) = (y0,50) one has (yk,dk) e DEE Y For
all sufficiently large k. But (yk,ak) £ TY C U, contra-
k
dicting the disjointness of U and V. Therefore, TY cUu
0
and since TY2C: V.o Yo # Y2» OF Y1 < Yg < Yoo and for all
Yg <Y £ Yq, TYc: V by definition of y,. Now let {y'}

be a sequence converging to Yo such that Yﬁ > ¥y for all n.

Thus, TY s C V., Let (Yn,dn) 3 TY ; in the same manner as

before itncan be shown that for ancertain subsequence
{(Yé,ﬁé)} of {(Yﬁ,dé)} the point (vy,8,) belongs to both
U and V for all k sufficiently large, in contradiction.
This final contradiction proves that there is no separation
of graph*f, and graph*f is connected.

Observe that if £ is continuous, graph*f = graph f,

and one obtains the well-known result:

)
Corollary A.2.1 The graph in R of a continuous

real function is connected.

A.3 Support Lines

Suppose C is a convex set on 32 and L is a line
such that C lies entirely on L or on one side of L (that
is, CC LV Hl, where H, is cne of the half-spaces deter-
mined by L) and L intersects C at least at one point.

Then L is called a line of support for C. Two fundamental

lemmas concerning support lines are now stated and proved.
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Lemma A.3 Given any convex closed set CC g#
and a point p in its boundary, there exists a line of sup-
port for C passing through p.

Proof: 1If C is zero- or one-dimensional the claim
is obvious since CC L for some line L. Hence assume C
is two-dimensional and p ¢ bd C. Choose any line LO through
p. 1f LO is not already a line of support there exist two
points of C on opposite sides of LU’ q and s, not on Lg,

and thus a point r on Ly such that (qrs); by convexity of C,

r ¢ C. Thus, the set of rays 5? for which x ¢ C (\ H where
H is the opposite side of LO as s, is nonempty. Accordingly,
set

8y = supl0 = & xprl, B8 & T,
for x ¢ COHVH. 1t is claimed that if ray 5?? is determined

0
in Ly V H such that 4x0pr = 9, then line f)'%_‘:—_ L is a line

of support of C through p.

Figure A.1.

If L is not a line ot support there exist points of C on
opposite sides of L, and thus a point y ¢ C lies on the r'-

— —>
side of L. where ray pr' opposes pr on Lo - If y € H then
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(E?n E? 5?6) follows from properties of betweenness (Kay

1969) and © =4 ypr > §x0pr = 0,, contradicting GO > 4

Figure A.2.

(definition of 50). Hence y fIT)U H' where H' is the xO'—

side of LO' But y ¢ Ly implies p is interior to Ayqgs and

Figure A.3.

since C is convex with y, q, and s in C,Aygs and its interior
belong to C. Hence, p £ int C, a contradiction (an interior
point cannot be a boundary point). Hence y ¢ H' and the

ray E;h opposing E? lies on the H side of LO. Since (ypx')
holds for some point x' ¢ C then x' ¢ C/ H and 00 > 8"

=X x'pr. By definition of 8o there exists x ¢ C A\ H such

that 6' < 6 < % where 6 =X xpr. Then it follows that

(Kay 1969, p. 63) (6; 5?' 5;) and that p ¢ int C, a
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contradiction. Therefore, L is a line of support through

P.

Figure A.4.

Lemma A.4 Let K be a closed subset of SZ, with
x # K. There exists p ¢ bd K such that the perpendicular
L to line §B at p is a line of support of K.

Proof: Define the function f on K by setting
f(k) = p(x,k), for each k ¢ K. It is well known that the
metric itself is continuous in its own topology (that
defined by disks), so it follows that f is a continuous,
real-valued function defined on a compact set. By an

earlier comment (compactness, Section A.2) f takes on its

absolute minimum at some point p € K. Since po(p,x) < p(k,X)

for all k ¢ K it follows that p is not interior to K.
Hence p ¢ bd K. Consider the perpendicular L to ﬁg'at p-
It L were not a line of support there would exist a point
y ¢ K on the x-side of L (v § L), and hence (Figure A.5)

Xxpy £ /2. Now, x f ¥y, for otherwise y ¢ Xp which

means (since x # y) either (yxp) or x ¢ py C K by convexity
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Y

Figure A.5.

of K, a contradiction, or (xyp) which would imply p(x,y) <
p(x,p), a contradiction. Take first the case p(x,p) < w/2.
Locate z, the foot of x, on line $y. Then since p(x,z) <
p(x,p) < m/2 one has p(x,z) < /2 and it follows (Kay

1969, p. 1l14) that p(x,z) < p{(x,p). Hence z ¢ K or else

the definition of p ¢ K is contradicted. Thus y # z and
p(x,z) < o(x,y). Let m be the midpoint of segment 5;;

then p(p,m) = o(m,y) < n/2 since p(p,y) = 7 implies y ¢ Eﬁ:.
By Kay (1969, p. 52) either (zpm), z = p, (mzp), m = z,
(mzy), z = y, or (myz) holds. The cases z = p and z = y are
ruled out since z ¢ K. Also, since p, y ¢ K and K is convex
one cannot have z ¢ py; therefore (mzp), m = z, and (mzy)
cannot hold. This leaves (zpm) or (myz). If (zpm) then
since the sides of triangle xpz are each < 1/2 the Exterior
Angle Theorem (Kay 1969) givesy mpx > xzp = n/2. But
Y mpx =Lypx < n/2 (since y and x are on the same side of L),
which 1is a contradiction. This leaves the case (myz). Here,

plx,2) < n/2 and p(X,p) < ©/2 imply p(x,m) < %/Z dnd, In
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turn, p(x,y) < m/2 by Kay (1969, p. 98). Therefore, the
Exterior Angle Theorem produces {xyp =& xym > xzy = m/2
>4 xpy and by Theorem 31.5 in Kay (1969), o(x,y) < o(x,p),
a contradiction since y ¢ K. This completes the case
p(x,p) < n/2. 1If o(x,p) > n/2 then the situation is as

pictured in the figure below.

Figure A.6.

Here, choose x' on’?? with p(x',p) = 7/2 and z on L such
that (x'yz). Then p(x,y) < p(x,2) + p({x',x) < p(x,p), a
contradiction. This is seen in the following:
p(x,y) < o(x,x") + p(x',y)

<holx, ) =t 2)

= p(x,x') + o(x',p)

=0k, p)
Therefore, no such point y ¢« K exists and L is a line of

support.

Lemma A.5 Given a closed convex set K of 32 con-

sisting of more than one point and a point x § K such that

no line through x contains K, there exist exactly two




1515

—>
distinct rays 231 and xb2 with bk e bd K, k = 1,2, such
that the lines 3&%( are support lines, and the ray xu for

each u € K either coincides with.§§3, or §BZ, or lies
between'§€3 and ;Ez.

Proof: Since no line through K contains X and K
is not a point, there is a segment ?I?Ec: K such that
z € ?I?E, and y; and y, lie on opposite sides of line z.
Define the bounded nonempty sets:

Sy ={dk={zxuklukLK, u lies on the y, -side of %z,

k = 1,2}

Let OK < 1 be the least upper bound of Sk’ k = 1,2. Choos-
ing a sequence {bﬁ} such that bﬁ ¢ 35%((\ K for each k, a

subsequence {bi} converges to some point bk ¢ K (since K

*
is compact) such that 9, =§£szk, k =1,2.

Figure A.7.

Observe that bk g ik, for If bk ¢ bd K then bk

is an interior point of K, in which case a disk D about bk
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lies in K; but then there exist u ¢ D () V such that ray

-
;EL lies between xUG and Xz and u is on the y -side of %2

. 7‘< - .
with 6 = 24 zxu ={szk +4bkxu > 4szk = Uk, contradicting

kY
the fact that 6, is an upper bound for §, .
e v .
Now, if xbk is not a support line of K there exists

points u u, of K on opposite sides of line and the

..
segment uu, intersects xbk at a point us; if uq / ray

.L ’

xb, or ug = X then x ¢ conv {u u2,z}c: K contradicting
x £ K. Hence ug € ;QL and ujg # x, so that a point u ¢

ug 2 N K such that ray xbk lies between XU and X2 and u

x

k

g (as before), in contradiction. Therefore, xbk is a support

is on the Yie side of‘f?with B =X zxu >4& zxby = 6

line of K.

s s

Finally, if u is any point of K then u lies both
> >
on the b2 side of xbl, and the b1 side of xb2. That 1is,

ug[H(bxb)nH(b )]Uxb u??anduueson‘ﬁ”l,

T

xbz, or is an interior point of the angle bIXbZ' Hence

. — . . : S==tb — —_
either xu coincides with xbl OF xbz, Oor Xu lies between

-y __5
xb1 and xb2

—_
(Note that, in particular, z € K so (§3’ Xz xXb.,)
1 2
| or & zxb, +4§.:).xb2 =§blxbZ < mand 6; + 0, < m.)
|
| o
,i Lemma A.6 Given a closed convex set V of SZ, with

points x £ Vand b + bd V such that &b is a support line
1 to V at b. There exists a point x' on bd V and u ¢ Xb such

| “> !
, that ux' is a support line of V at x' and p(u,x') = p(x,u).
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Proof: Let g be defined as follows: For each
u ¢ xb let u' denote that point on LU(W bd V nearest u,
where L denotes the unique line of support of V from u

>
different from the support line xb (Lemma A.5). Then take

g(A) = g(uk) = p(uA,ui) - o(x,ul), 0 < A < B, where u;
denotes a parametrization of segment xb such that plb,u,) = A,
with up = b and ug = X. Note that

g(0) = p(b,b*') - plx,b) = =plx,b} < 0, g(B) = o(x,x") - p(x,%)

pex,x") > 0.

The augmented graph of g in R2 (coordinated by

(E,n)) is connected by Lemma A.2, with the points (0,g(0))

and (B,g(B)) on opposite sides of the line n = 0 (the f-axis);
hence (y,0) ¢ graph*g for some vy, 0 <y < 8. If g is

continuous at y then lim inf g(r) = g(y) = lim SUP,)

A>Y
g(\) and (v,0) = (v,g(y)). In this case one has g(y) = 0,
or, p(u ,ul) = p(x,u ).

However, g may be discontinuous at y; so it is
desired to show that g has a simple jump discontinuity at
any such point. From the nature of the boundary of a convex

set it is clear that for points u, with X < y the corres-

1
Y
taking a counterclockwise orientation (parametrization)

ondin oint u! on bd V precedes or coincides with u
p g P N prececes

of bd V. For, if u] follows u; on bd V (Figure A.8) then

“> ) — ’

bui meets line uyu; at a point v such that either v = uj
' ¢ + < ¥ o s

or u, is between v and b, since uqu is a line of support

of V and the points b and u] cannot lie on opposite sides
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of uyu;. By the Crossbar Principle (Kay 1969) and related

ideas, the segment ukui meets uib at some point w interior

to both segments, and hence V contains points u; and b on
. z . >, s

opposite sides of line u,u,, contradicting the fact that

>
uxui is a line of support of V.

Figure A.8.

Now let y be a point of discontinuity of g.
Let A»y (that is, A approaches Yy from values less than v).
Since bd V is compact some sequence {)n} of A's is such

that {u] } converges to a point vy bd V. If lim uy # vy

A
n A >0
then another sequence {un} of X's is such that {ud } con-
n
verges to Vv, # vy on bd V. But the line u, u; converges

T
to the line qul, and this line must be a line of support

to V from u, . Since there are exactly two such support lines

(Lemma A.5), uyv1 must be either Lu or xb; it is obvious
Y

> P
that v vy, = L. . Similarly, uw v, = L and hence both v
i | u - ¥ 2 u 1

and v, lie on Ky = uyu; with vy and v, coinciding with or

¥
preceding u; on bd V. But by definition of u;,
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o(uY,vk) Eal p(uy,uY), k = 1,2
and if inequality prevails then L5 would follow u; on bd V,
which is impossible.
Hence

D(uY,vk) = o(uY,uY)

with Vi € Lu . Hence N u§ for k = 12 Fhis ‘proves

that lim ul= u'

ArY T £ L

}i?“ g(d) = %i$_ (o (u,,uy) - p(x,uy)] = p(u, ,ul) - p(x,u ) = g(Y).
By an argument exactly similar it can be shown that

and hence

if u¥ is that point on L N bd V farthest from u, then
% '
Lim, uy = u
A»y4- A Y

and
X s " — _z_
ii$+ g(\) o(uY,uY) p(x,uY) B
S. " > ]
ince p(uY,uY) > o(uy,uy) we have

o(uy,u;) - n(x,uy): g(Y)
or

lim, g(}) = a > g(v).
A>Y
Hence if g is discontinuous at y then

lim, g@d)y = o, > gy} = Ha, gli.
A+ K Ay

& 3

Thus it follows that

lim inEX+Yg(A) min{g(y),a ] g(y)

o
R

and (yv,0) ¢ graph*g implies (y,0) lies on the segment

lim SUPA»Yg(A) = max{g(y),ay}

determined by the points (v,g(y)), (y,uY) and g(y) < 0 < a,
That is,

p(uY.uY) 5 o(x.uY) <0« w(uy,uy) = o(X.uY)
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SR L X, U < plu ).

o(YY)_p( Y)_L(Y Y)

Since;{uY,v) varies continuously from p(uY,u;) to p(uy,u¥
. Ul - :

as v varies on the segment uYuy, the ordinary Intermediate

Value Theorem guarantees a point v on u;u;CZ bd V such that
p(u_,v) = p(x,u_).
(Y) (Y)

Thus in all cases it has been proven that there exists a

<«
point x' on bd V and u such that ux' is a support line of

V at x' and p(u,x') = e(x,u).

Definition A.4 The Carathéodory number ¢ 1is the least

integer for which it is true that for any set A and any

a. of A

point X € conv A there exist c points ap, ..., a,

such that x ¢ conv{al, o ac}.

Lemma A.7 The number c (Carathéodory) is equal to

3 in spherical space, as it is on the plane.

Proof: It is clear that c¢ > 3 by considering the
case A = {al, ag, a3}, the vertices of a nondegenerate
spherical triangle. Hence it suffices to show that ¢ < 3.
Let AC 82 and suppose x &€ conv A; also, suppose X ¢ A,
for otherwise one may simply take a; = a, = ay = X and the
result is trivial. Assume first that A is contained by
some closed hemisphere. Consider the two cases: x ¢ bd
conv A and x ¢ int conv A. If x ¢ bd conv A let L be a

line of support of conv A at x and H the A-side of L if

A L; here it follows that x conv{al, a2} for a pair of




|
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points a;, a, ¢ A (and we take as = a, so that x £ conv
[al, a,, a3}). For, if no point of L lies in A then H is

a convex set containing A but not x, which implies the con-
tradiction x € conv AC conv H = H, since x ¢ H. Thus,
there must exist a ¢ AN L. Consider the two opposing rays
on L with origin x, say Ry and RZ’ with a ¢ Ry Now A N
R, # ¢ for otherwise HW Rl\{x} is a convex set containing

A but not x. Let a, ¢ AﬁRk, k = 1, 2, be such that p(x,a

k
is minimal (assuming for the moment that A is closed; the

argument for the case when A is not closed is very similar).

If p(x,al) + p(x,a?_) > m then x ¢ conv{al, a2} and conv{al, az}

contains all the points of AM L (by the minimal property
of p(x,ak), k = 1,2); then one would have the convex set

HU conv{al, az} containing A but not x, a contradiction.

a.

Hence p(x,al) + p(x,az) < 7 and it follows that x ¢ aa,
conviay, 32}~ This completes the case x ¢ bd conv A.

If x ¢ int conv A then let D be a disk centered
at x with D C conv A. There must exist a; © A such that
a; lies in the open hemisphere H whose closure contains A,
for otherwise A would be contained in the line L which
determines H and conv AC L or D& conv A, a contradiction.
Hence aj ¢ AN H and we consider line ?(Zl and the two
sides H; and H, of *)(—;1' Certainly A M\ He # ¢ for k = 1,2,
or else conv A C conv(A n'ﬁkﬂ) and D¢ conv A. The clo-
sure of AN Hk (the set AN Hk and all its boundary points,

denoted cl(A N H )) is compact, so there can be found
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ay € cl(a N Hy) and aj ¢ clan HZ) such thatd.alxa2 and
Aalxa:'3 are maximal (Figure A.9). If Aalxaé +t}.alxaé < m
then all of A would lie on one side of a line through x
and we would have D & conv A. Henceéalxaé +§alxaé >

and there accordingly exist a, ¢ AN Hl, ay € AN H2 such

that & axa, +§a1xa3 > nm (Figure A.9). It follows since

Figure A.9.

¢ H and a,, ag ¢ Hf) L, that x is an interior point of

5
triangle ajaja,. This implies that x € conv{al, as, 33},
finishing the case when A lies in a closed hemisphere.
Finally, if A does not belong to a closed hemisphere then
let H be a closed hemisphere which contains x, and define
the set A' = A H. Then

conv A' = conv(AMN H) = conv A0 conv H = (conv A)N H
and since x belongs to both conv A and H we have x ¢ conv A'

where A' is contained by a closed hemisphere. By the pre-

ceding case, x ¢ conv{al, a,, a3} where ay, a,, ag belong

to A', and therefore, also to A.
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A.4 Convex Polytopes on 82

A convex polytope is the convex hull of a finite

set of points. As in classical convexity, every convex
polytope in 82 is compact. The question of when conv A is
compact is nontrivial even though on 82 any closed set is
compact. Just as in the plane, there exist closed sets A
such that conv A is not closed: Take a pair of antipodal
points a, a' and a circle C through a' of radius less than
m/2 (Figure A.10). Then take A = a\l C; the convex hull
of A is clearly the open hemisphere containing C, together

with a and a'--not a closed set.

Figure A.10.

It is now shown that if A is finite then conv A

is closed (therefore compact).

Lemma A.8 Any convex polytope on S2 is compact.

Proof: Let A = {al, S0y an}, and consider a boundary

point x of conv A; it is shown that x € conv A, proving

that conv A contains its boundary points. For each integer
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k =1,2, ... let Dk be the disk centered at x having radius

1/k. Then Dk contains a point X, € conv A, and lim g =~ &
h k>
(since lim p(x,xk) = 0). Since S has Carathéodory number
k>
3 (Lemma A.7) there exist for each k a set of 3 points

a, , a, , and a
L' T2 3

{a, , a, , a, }. Since A is finite there is a subsequence
o

{k'} of k's for which a

from ay, ...; a.  sueh that x, € conv
1 n k

1 is constantly equal to a, in A.

kl
Hence x, , ¢ convi{a , a. o -a }. Again, a subsequence {k'}
k u Zkv 3k|
of {k'} exists such that a, S e A and, finally, a
k'l
subsequence {i} of {k"} such that By = Hence, a

i

subsequence {i} of {k} exists such that x, ¢ conv{au, a

i , Ak,

v

with lim x. = Xx. Since conv {au, a,,
i

point, a segment, a line, or a nondegenerate triangle

aw} is either a

and interior (therefore closed), it follows that x ¢

conv{au, a,, aw}C: conv A, as was to have been proved.
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APPENDIX B

DATA FOR EXAMPLE PROBLEMS

Latitude
Number nggnd Longitude Weight
oint
in Degrees
D1 P, (0,180) L
See
Figure P (0,36.86) 1L
3.1 2
P3 (30,-60) 1
Pl (0,40) 1
D2
See P2 (0,55) 1
Fgg‘zlre Py (0,145) 1
: p 0,160 1 1 R
4 o b (0,90)
P1 (70.70) i
P2 (30,80) 1)
D3
See P3 (50,60) b
Figure
3.6 P4 (30,20) 5
P5 (20,10) 5
P6 (10, 30) 5
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4 ; Beoind Latitude ot
i | s Longitude eight
1 i Foine in Degrees
i
! P, (90,0) ]
! D4
i See 2 (0,20) 2
i Figure
§ 3%10 P, (0,100) 1
;\
’ 40,160) 1
! L S P e
(0,90) “3
: 1
, Py (30,-60) :
| D5 : 5
f See Py (0,180)
Figure
| 4%1 Py (0,40)
P, (-90,0)
Py (0,10)
P2 (0,16)
P3 (0,20)
P, (0,70)
P5 (0,80)
Py (0,120)
sD6 P, (0,136)
ee
Figure P8 (0, 140)
5.1
p (0,180)
g 13
p (0,-10) 1 P12 By
10 !
- 1
Py (0,-80)
= 1
P (0,-124) 1
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Latitude
Longitude  Weight
in Degrees

Demand

Number Potit

D7 P,  (60,30) 1
P,  (-60,0) 1 v,

Py (60,-90) 1 1
D38 P, (60,-30) 1
P (-60,-60) 1

P
Py (90,0) 1 1
D9 P,  (30,20) 1
Py 430,130) 1
P, (90,0 1
D10 P,  (-30,20) 1
Py (-30,160) 1 W
P, (0,0) L
P,  (50,80) 1
D11l
Py, (0,130 1
g
P
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Hemana Latitude
Number Point Longitude Weight
S in Degrees
i

P, (90,0) 1 l
P, (80,45) 1

D12
P3 (40,10) it
P, (60,80) 1
P, (0,20) 1 P,y
P, (90,0) 1

D13
P3 (0,100) 1
P4 (40,160) 2 1
P1 (0,20) i )
P, (90,0) 1

D14
Pq (0,100) I
P, (40,160) 1 1 -2

3

Py (90,0) 1
P2 (-90,0) I
P (0,0) &

D15 s
PA (0,90) 1
B (0,-90) 1

(0,180)
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Latitude
Number Demand Point Longitude Weight
in Degrees
P1 (-12,48) 1.
P2 (65,75) 3
P3 (15,=20) 2
D16
See P, (25,-115) 2
Figure
5.2 P5 (-30,175) 3
P6 (-70,-110) 2
Pl-Norway (-70,0) 1
Station
P2-Amundsen- (-90,0) 1
Scott Stn. o
P 0~ Meridian
P3-Pa1mer (-65,-65) 1
Station
P4 Byrd (-80,-120) il
Station
D17 PS—Little (-78,-160) i
America
P6—Port (-66,140) 1
Martin
P7-Mawson (-65,62) i
Pg-Mirnyy (-66,94) 1
P9-American (-70,75) L

Highland




Number D18:

S Latitude . . Latitude :
Gity Longitude Hedgue | CLoy Longitude Welght
Minsk (54,28) 0.012 Zhdanov (47,38) 0.007
Lvov C50L24)  G-0L0 Stalino (48,37) 0.016
Kishinev (47,28) 0.005 Makeyevka (48,38) 0.008
Odessa ¢46,31) 0.01L% Gorlovka (48,38) 0.007
Nikolaev (47,32) 0.005 Taganrog (47,39) 0.005
Kherson (4/7,33) 0.004 Krasnodar (45 39) 0.007
Sevastapol (45,34) 0.004 Rostov (47,40) 0.0L14
Simferopol (45,34) 0.004 Shakhty (48,40) 0.004
Krivol Rog (46,34) 0.009 Kadiyevka (49,39) 0.004
Dneprodzerhinsk (48,35) 0.004 Kharkhov (41,37) 0.021
Dnepropetrovsk (48,35) 0.015 Kiev (50,31) 0.026
Zaporozhe (48,36) 0.010 Gomel (52,31L) 0.004
Number D19:

Demand ; Latitude -

Point S Longitude Wetg At

1 Montgomery, Alabama (32°257, -85°17") 62,650
2 Juneau, Alaska (58°25" -134°30") 1,163
3 Phoenix, Arizona (3330, ~-112°00") 22,288
4 Little Rock, Arkansas {34°42°% . -92°16") 20,916
5 Sacramento, California  (38°35',-121°30') 394,139
6 Denver, Colorado (39%44',-104°59"') 47,453
7 Hartford, Con ~cticut (461945, -72°40") 74,813
8 Dover, Delaware (39010',—75030') 15,863
9 Washington, D.C. (38950 ,-77°00") 238,476
10 Tallahassee, Florida (30°25',-84°17") 80,791

11 Atlanta, Georgia (33%5",-84°23") 79,198

12 Boise, Idaho (43°38',-116°12") 9,502

13 Springfield, Illinois (39°46',-89°37"') 387,961

14 Indianapolis, Indiana (39%45"',-86°08") 91,294

15 Des Moines, Iowa (41°35',-93937") 60,204
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Demand .l Latitude ;
Point Giey Longitude Wezgar
16  Topeka, Kansas (39°02*,-95%41") 47,086
17 Frankfort, Kentucky (38°10",-84°55") 41,344
18 Baton Rouge, Louisiana (307 28", -91° 10" 52,978
19 Augusta, Maine (44°19"',-69°42") 17,631
20 Annapolis, Maryland (39°00"',-76°25") 73,834
21 Boston, Massachusetts (42°15',-71°07') 153,409
22 Lansing, Michigan (42°45' ,-84°35"') 127,187
23 St. Paul, Minnesota ¢44%57%,-93%05") 90,323
24 Jackson, Mississippi £32°17°  <90°10") 24,448
25 Jefferson City, Missouri (38034',—92010') 139,140
26 Helena, Montana (h6”34"  -112%01%) ' 17,322
217 Lincoln, Nebraksa (40°49',-96°43") 35,658
28 Carson City, Nevada (39010',—119045') 9,207
29 Concord, New Hampshire  (43°10',-71°30") 11,631
30 Trenton, New Jersey (40°13"',-74%6"') 184,397
31 Sante Fe, New Mexico (35°10',-106%00"') 17,645
32 Albany, New York (42°40°,-73°50") 662,584
33 Raleigh, North Carolina (35°45',-78°39") 73,749
34 Bismark, North Dakota (46°48' ,-100°46"') 11,646
35 Columbus, Ohio (40°00',-83°00') 219,330
36 Oklahoma City, Oklahoma (35°27',-97°32") 59,159
37 Salem, Oregon (44°55',-123°03') 45,733
38 Harrisburg, Pennsylvania (40°15',-76°50') 302,933
39 Providence, Rhode Island (41°50',-71°23") 22,769
40 Columbia, South Carolina (34000',—81000') 28,434
41 Pierre, South Dakota (44022',-100020') 10,292
42 Nashville, Tennessee (36010',-86048') 68,770
43  Austin, Texas (30°15',-97°2') 233,041
44 Salt Lake City, Utah (40°45',-111952*) 23,110
45 Montpelier, Vermont (44°20',-72°35") 14,082
46 Richmond, Virginia (37°35',-77°30") 74,408




Demand
Point

Latitude
Longitude

Weight

47
48
49
50

Olympia, Washington ¢47%2"  -122%52%)
Charleston, West Virginﬂa(38°20',-81035')
Madison, Wisconsin (43005‘,-89023')

Cheyenne, Wyoming (41010',-104049')

53,472
23,240
86,544

7,489

P,
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